Camerer & Ho (1999) Chen, Liu, Chen, and Lee (2011)

Repeated Interactions

CMPUT 654: Modelling Human Strategic Behaviour

Lecture Outline

1. Camerer & Ho (1999)

2. Chen, Liu, Chen, and Lee (2011)

Camerer & Ho (1999)

Why:

Extremely influential model of repeated interactions

- Explain the motivation: Combining choice reinforcement 1. with **belief-based** learning
- 2. Describe the model (including how it generalizes choice reinforcement and belief-based learning)
- 3. Some empirical results (parameter fits, performance)

Belief-Based Learning

Paradigmatic version is fictitious play [Robinson 1951]:

- 1. Estimate strategy of op
- 2. Best respond to \hat{s}_{-i}
- Takes no account of payoffs of other agent
- Requires access to all of own counterfactual payoffs lacksquare

ponent as
$$\hat{s}_{-i}(a_{-i}) = \frac{w(a_{-i})}{\sum_{a'_{-i} \in A_{-i}} w(a'_{-i})}$$

Choice-Reinforcement Learning

- Each action has an associated reinforcement $R(a_i,t)$
- Reinforcements on chosen actions update based on realized payoffs (where $0 \le \phi \le 1$):

$$R(a_i, t) = \begin{cases} \phi \cdot R(a_i, t-1) + u_i(a_i, a_{-i}(t)) & \text{if } a_i(t) = a_i, \\ \phi \cdot R(a_i, t-1) & \text{otherwise.} \end{cases}$$

Experience-Weighted Attraction

• Action probability is monotonic in **attractions** $A(a_i,t)$:

Attractions updated according to

$$A(a_i, t) = \frac{\phi \cdot N(t-1) \cdot A(a_i, t-1)}{2}$$

where

 $s_i(a_i, t) = \frac{\exp[\lambda A(a_i, t)]}{\sum_{a_i \in A_i} \exp[\lambda A(a_i', t)]}$

) + $[\delta + (1 - \delta) \cdot I[a_i = a_i(t)]] \cdot u_i(a_i, a_{-i}(t))$ N(t)

 $N(t) = \rho \cdot N(t-1) + 1$

Differences from Belief-Based Learning

- Initial attractions can be **arbitrary**
- Attractions can grow outside bounds of payoffs

Empirical Results

- Actually do an out-ofsample check!
- EWA and belief-based perform best on this data
- Stylized behaviour in beauty contests:
 - 1. Dispersed initial play
 - 2. Rapid convergence to equilibrium

Game Model

Median Action (M

- 1-Segment
- Random Choice
- Choice Reinford
- Belief-based
- EWA
- 2-Segment Random Choice Reinford Belief-based
 - EWA
- p-beauty contests
- 1-Segment Random Choice Reinford Belief-based
- EWA
- 2-Segment Random Choice Reinford
 - Belief-based
 - EWA

	No. of	Calibration			Validation		
	Parameters	LL	AIC	BIC	ρ^2	LL	MSD
1 = 378)							
e	0	-677.29	-677.29	-677.29	0.0000	-315.24	0.1217
cement	8	-341.70	-349.70	-365.44	0.4837	-80.27	0.0301
	9	-438.74	-447.74	-465.45	0.3389	-113.90	0.0519
	11	-309.30	-320.30	-341.94*	0.5271	-41.05	0.0185
	0	-677.29	-677.29	-677.29	0.0000	-315.24	0.1217
cement	17	-331.25	-348.25	-381.70	0.4858	-66.32	0.0245
	19	-379.24	-398.24	-435.62	0.4120	-70.31	0.0250
	23	-290.25	-313.25*	-358.51	0.5375	-34.79*	0.0139*
(M = 1372)							
	0	-6318.29	-6318.29	-6318.29	0.0000	-2707.84	0.0099
cement	12	-5910.99	- 5922.99	-5954.33	0.0626	-2594.37	0.0101
	13	-6083.04	- 6096.04	-6129.99	0.0352	-2554.21	0.0097
	15	-5878.20	-5893.20	-5932.38	0.0673	-2381.28	0.0098
	0	6210 20	6210 20	6210 20	0.0000	7707 01	0.0000
	0	-0318.29	- 0318.29	-0318.29	0.0000	-2/0/.84	0.0099
cement	25 27	- 3910.98	- 3733.98 6110.02	-0001.28	0.0005	-2394.17	0.0101
	۲/ 21	-0083.02	-0110.02	-0180.34	0.0016	- 2004.11	0.009/*
	31	-3//1.40	-3802.40*	-3883.43*	0.0810	-2555.00*	0.0098

Chen, Liu, Chen, and Lee (2011)

Why: Recent, high-performing behavioural model

- Define the model 1.
- 2. Empirical results

Market Entry Games

- Binary choice whether to enter a risky market
- Entry payoff is
- $V(t) = 10 k \times E + G_t$
- where G_t is randomly L < 0 or H > 0, with $\mathbb{E}[G_t] = 0$
- Not entering yields G_t / s or $-G_t / s$ with equal probability

Model: I-SAW

- Agents are in one of three **modes**: explore, inertia, exploit
 - explore mode: choose from some fixed distribution
 - inertia mode: choose the same action as last time
 - exploit mode: choose action with highest expected subjective value:

- Fixed probability ε of entering explore mode; else, enter inertia mode with high probability when surprise is low
- $ESV(a_i) = (1 w)(SampleM(a_i, t)) + w(GrandM(a_i, t))$

differently (only draws from *b* most recent games)

BI-SAW

Exactly the same as I-SAW, except that SampleM is defined

Simulation:

- Parameters chosen for each individual
- Chosen uniformly from a range
 - Lower bound fixed, upper bound learned ullet
- 5000 trajectories sampled from the game, error is averaged

Estimation:

• Grid search on upper bounds!

Simulation & Estimation