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Camerer, Ho, and Chong 
(2004)

Why: 

• One of the most influential papers on single-shot play 

• Proposes a very intuitive model that also predicts well 

• Shows some drawbacks of standard practice in 
behavioural economics 

• Proposes the cognitive hierarchy model of human behaviour 

• Presents experimental data in support



Fun Game: 
Keynesian Beauty Contest

• Let's play the Beauty Contest game! 

• Everyone chooses an integer between 0 and 100 

• Whoever is closest to 2/3 of the average wins



Iterative Strategic Thinking

Level-0: Some nonstrategic distribution of play  
(uniform randomization, truthfulness, maxmin, etc.) 

Level-1: Respond to level-0 players 

Level-2: Respond to level-1, or to levels 0,1 

Level-k: respond to level k-1, or to levels 0,1,...,k-1

. 

. 

.



Cognitive Hierarchy
• Levels distributed according to g(k) 

• Level-k responds to distribution g(m | m < k) 

• Every agent wrongly believes that all the other agents 
perform fewer steps of reasoning 

• But every agent gets the conditional distribution right 

• Distribution is a parameter of the model to be fit from data 

• This paper uses single-parameter Poisson(𝜏)



Model FitA COGNITIVE HIERARCHY MODEL 879 

TABLE IV 
Model Fit (Log-likelihood LL and Mean Squared Deviation MSD) 

Stahl and Cooper and Costa-Gomes 
Data set Wilson Van Huyck et al. Mixed Entry 

Log-likelihood 
Cognitive hierarchy 

(Game-specific t) 
Cognitive hierarchy 

(Common t) 
Nash equilibrium8 

Mean squared 
deviation 

Cognitive hierarchy 
(Game-specific t) 0.0074 0.0090 0.0035 0.0097 0.0004 

Cognitive hierarchy 
(Common t) 0.0327 0.0145 0.0097 0.0179 0.0005 

Nash equilibrium 0.0882 0.2038 0.1367 0.0387 0.0049 

a. The Nash Equilibrium result is derived by allowing a nonzero mass of 0.0001 on nonequilibrium 
strategies. 

IV.C. Which Models Fit Best? 

Table IV shows log likelihoods (LL) and mean-squared devia 
tions for several models estimated game-by-game or with com 

mon parameters across games in a data set.15 This table answers 
several questions. Focusing first on the Poisson-CH model, game 
specific estimates of t fit almost as well as common within-column 
estimates in most data sets (except for the Stahl-Wilson data). 
The Poisson-CH model also fits substantially better than Nash in 
every case. This shows that relaxing mutual consistency can be a 
fruitful approach to building a descriptive theory of disequilib 
rium behavior in games. 

A graphical comparison of how much the theories' predictions 
deviate from the data gives a quick snapshot of how accurate they 
are. Each point in Figures II?III represents a distinct strategy in 

15. When the Stahl-Wilson games 2, 6, 8 are included, the common t is 0 
because these games swamp the other ten, so we excluded those games in doing 
the common-T estimation. Poisson-CH fits badly in those games because the Nash 
strategy is not reached by any number of thinking steps, but is frequently chosen. 

The best the model can do is to pick t = 0 so that Vs of the players are predicted 
to pick it (since there are three strategies). These games show boundary condi 
tions under which the model fails badly. Modifying the model so that a fraction d> 
of the 0-step players are actually choosing Nash (which will then lead 1-step types 
to choose Nash if <J> is large enough) would patch this problem. Including some 
self-awareness would also explain these anomalies. 

-360 -838 -264 -824 -150 

-458 -868 -274 -872 -150 
-1823 -5422 -1819 -1270 -154 



Parameter Estimates878 QUARTERLY JOURNAL OF ECONOMICS 

TABLE III 
Parameter Estimate t for Cognitive Hierarchy Models 

Stahl and Cooper and Costa-Gomes 
Data set Wilson Van Huyck et al. Mixed Entry 

Game-specific t 
Game 1 2.93 15.90 2.28 0.98 0.70 
Game 2 0.00 1.07 2.27 1.71 0.85 

Game 3 1.40 0.18 2.29 0.86 ? 

Game 4 2.34 1.28 1.26 3.85 0.73 
Game 5 2.01 0.52 1.80 1.08 0.70 

Game 6 0.00 0.82 1.67 1.13 
Game 7 5.37 0.96 0.88 3.29 

Game 8 0.00 1.54 2.18 1.84 
Game 9 1.35 1.89 1.06 

Game 10 11.33 2.26 2.26 
Game 11 6.48 1.23 0.87 
Game 12 1.71 1.03 2.06 

Game 13 2.28 1.88 
Game 14 9.07 
Game 15 3.49 
Game 16 2.07 
Game 17 1.14 
Game 18 1.14 
Game 19 1.55 
Game 20 1.95 
Game 21 1.68 
Game 22 3.06 

Median t 1.86 1.01 1.89 1.77 0.71 
Common t 1.54 0.82 1.73 1.48 0.73 

analytical skill (e.g., Caltech undergraduates) or special training 
(game theorists and computer scientists who study multiagent 

machine learning), which is a clue that lowering thinking costs 
due to skill or training leads to higher t. (2) Unpublished data we 
have collected also show larger estimates of t (about .5 steps 
more) in Caltech undergraduates than in comparable students 
from a nearby community college (more evidence of skill or lower 

cognitive cost as an important variable). (3) Unpublished data 
show that in incomplete-information signaling games, t is esti 

mated to be lower (less than 1). Bayesian updating on what 
another player's signal choice reveals about her likely thinking 
step type presumably consumes more working memory than sim 

ply computing expected payoffs (raising thinking costs), so lower 
t's in these games are also consistent with cost-benefit calculus. 



Economic ValueA COGNITIVE HIERARCHY MODEL 885 

TABLE VIII 
Economic Value of Various Theories 

Stahl and Cooper and Costa-Gomes 
Data set Wilson Van Huyck et al. Mixed Entry 

Observed payoff 195 586 264 328 118 

Clairvoyance payoff 243 664 306 708 176 
Economic value 

Clairvoyance 48 78 42 380 58 

Cognitive hierarchy 
(Common t) 13 55 22 132 10 

Nash equilibrium 5 30 15 -17 2 
% Maximum economic 

value achieved 

Cognitive hierarchy 
(Common t) 26% 71% 52% 35% 17% 

Nash equilibrium 10% 39% 35% -4% 3% 

The economic value is the total value (in experimental payoffs) of all rounds that a "hypothetical" subject 
will earn using the respective model to predict other's behavior and best responds with the strategy that 
yields the highest expected payoff in each round. 

dieting "clairvoyantly" (i.e., using the actual distribution of strat 

egies chosen by all other subjects), are also reported because 
these represent an upper bound on economic value. 

The Poisson-CH approach adds value in all data sets, from 20 
to 70 percent of the maximum possible economic value. Nash 

equilibrium typically adds economic value, although only about 
half as much as Poisson-CH, and subtracts value in one data set. 
Recall that if players were in equilibrium, the Nash predictions 
would have zero economic value, and disequilibrium models like 
CH would have negative economic value. The fact that this pat 
tern is not observed is another way of saying players are not in 
equilibrium, and economic value measures the "degree" of 
disequilibrium. 

VI. Economic Implications of Limited Strategic Thinking 

Models of iterated thinking can be applied to several inter 
esting problems in economics, including asset pricing, specula 

forecasting (after all, distillation of data is part of what people pay for when they 
buy forecasts). Furthermore, the subjects have "data" (or insight) which the model 
does not have?namely, how people like themselves and their fellow subjects 

might react to a particular game, and how they may have behaved in dozens of 
other experiments they participated in. 



Fun Game: Stag Hunt
• Two hunters must independently 

decide whether to hunt for stag or 
hare 

• Stags are more valuable, but more 
difficult to catch; the hunt will only 
succeed if both hunters participate 

• Hares can be caught by a single 
hunter acting alone, but are less 
valuable

Stag Hare

Stag 2,2 0,1

Hare 1,0 1,1



Anomalies Explained

1. Behaviour in market-entry games  
entry monotonic in demand 

2. Limited steps of iterated removal of dominated strategies  
James: but c.f. the Traveller's Dilemma 

3. Risk-dominant vs. Payoff-dominant equilibria:  
more people play risk-dominant strategies as number of players increase



Economic Implications

1. Speculation 

2. Money Illusion



Why: 
Origin of "the other" family of behavioural models for single-shot 
games. 

• Introduces quantal response equilibrium, which generalizes 
Nash equilibrium 

• All agents "quantally respond" to each other 
simultaneously rather than best responding  

• Also experimental data

McKelvey & Palfrey (1995)



Quantal Response

• Best response: Maximum utility action is always played 

• Quantal response: High-utility actions played often, low-
utility actions played rarely
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Quantal Response 
Equilibrium

• In a Nash equilibrium, every player best responds to all others 

• In a quantal response equilibrium, every player 
quantally responds to all others 

• No single functional form for quantal response 

• Anything that yields higher probability for higher EU 

• In practice, usually softmax: 
 
 

si(ai) = softmax (ui(ai, s−i))
=

exp [λui(ai, s−i)]
∑a′�i∈Ai

exp [λui(a′ �i, s−i)]



Mathematical Properties 
of QRE

1. Theorem 1: QRE always exists 

2. Theorem 3: Unique branch of 𝜋*(𝜆) starting from 𝜆=0 and 
converging to a unique Nash equilibrium as 𝜆→∞ 

3. Example: Not every limit logit equilibrium is trembling-hand 
perfect



Data (aggregated)



Data (by period)



Wright & Leyton-Brown 
(2017)

• Large-scale comparison of different behavioural models 

• Combines data-sets from 10 different studies



Prediction Performance
J.R. Wright, K. Leyton-Brown / Games and Economic Behavior 106 (2017) 16–37 25

Fig. 1. Average likelihood ratios of model predictions to random predictions, with 95% confidence intervals. Error bars for NEE show upper and lower bounds 
on performance depending upon equilibrium selection; the main bar for NEE shows the average performance over all equilibria. Note that conclusions 
should not be drawn about relative differences in likelihood across datasets, as likelihood depends on the dataset’s number of samples and the underlying 
games’ numbers of actions. Relative differences in likelihood are meaningful within datasets.

Fig. 2. Average likelihood ratios of model predictions to random predictions, with 95% confidence intervals, on GH01 data separated into “treasure” and 
“contradiction” treatments. Error bars for NEE show upper and lower bounds on performance depending upon equilibrium selection; the main bar for NEE 
shows the average performance over all equilibria. Note that relative differences in likelihood are not meaningful across datasets, as likelihood drops with 
growth in the dataset’s number of samples and underlying games’ numbers of actions. Relative differences in likelihood are meaningful within datasets.

GH01’s games have multiple equilibria. This conferred an advantage to our NEE model’s upper bound, because it was al-
lowed to pick the equilibrium with best test-set performance on a per-instance basis. Note that although NEE thus had a 
higher upper bound than QLk on the “treasure” treatment, its average performance was still quite poor.

6. Analyzing model parameters

Making good predictions from behavioral models depends upon obtaining good estimates of model parameters. These 
estimates can also be useful in themselves, helping researchers to understand both how people behave in strategic situations 
and whether a model’s behavior aligns or clashes with its intended economic interpretation. Unfortunately, the method we 
have used so far—maximum likelihood estimation, i.e., finding a single set of parameters that best explains the training 
set—is not a good way of gaining this kind of understanding. The problem is that we have no way of knowing how much of 
a difference it would have made to have set the parameters differently, and hence how important each parameter setting is 
to the model’s performance. If some parameter is completely uncorrelated with predictive accuracy, the maximum likelihood 
estimate will set it to an arbitrary value, from which we would be wrong to draw economic conclusions.15

15 We can gain local information about a parameter’s importance from the confidence interval around its maximum likelihood estimate: locally important 
parameters will have narrow confidence intervals, and locally irrelevant parameters will have wide confidence intervals. However, this does not tell us 
anything outside the neighborhood of the estimate.



Model Variations
J.R. Wright, K. Leyton-Brown / Games and Economic Behavior 106 (2017) 16–37 31

Fig. 6. Model simplicity vs. prediction performance on the All10 dataset. QLk1 is omitted because its far worse performance (∼ 1087) distorts the figure’s 
scale.

precisions. This suggests that the most parsimonious way to model human behavior in normal-form games is to use a 
model of this form.

Adding flexibility by modeling general beliefs about precisions did improve performance; the four best-performing mod-
els all incorporated general precision beliefs. However, these models also had much larger variance in their prediction 
performance on the test set. This may indicate that the models are overly flexible, and hence prone to overfitting.

8.2. Parameter analysis of ah-QCH models

In this section we examine the marginal posterior distributions of two models from the accurate, homogeneous QCH 
family (see Fig. 7). We computed the posterior distribution of the models’ parameters using the procedure described in 
Sections 6.1 and 7. The posterior distribution for the precision parameter λ was concentrated around 0.20, somewhat greater 
than the QLk model’s estimate for λ1. This suggests that QLk’s much lower estimate for λ1(2) may indeed have been the 
closest that the model could get to having the level-2 agents best respond to a mixture of level-0 and level-1 agents (as in 
cognitive hierarchy).

Our robust finding in Sections 7.4 and 7.3 of a large proportion of level-0 agents was confirmed by these models as well. 
Indeed, the number of level-0 agents was nearly the only point of close agreement between all three models with respect 
to the distribution of levels.

9. Related work

Our work has been motivated by the question, “What model is best for predicting human behavior in general, 
simultaneous-move games?” Before beginning our study, we conducted an exhaustive literature survey to determine the 
extent to which this question had already been answered. Specifically, we used Google Scholar to identify all (1805) cita-
tions to the papers introducing the QRE, CH, Lk, NI, and QLk models (McKelvey and Palfrey, 1995; Camerer et al., 2004; 
Costa-Gomes et al., 2001; Nagel, 1995; Goeree and Holt, 2004; Stahl and Wilson, 1994), and manually checked every refer-
ence. We discarded superficial citations, papers that simply applied one of the models to an application domain, and papers 
that studied repeated games. This left us with a total of 24 papers, including the six with which we began, which we sum-
marize in Table 3. Overall, we found no paper that compared the predictive performance of all six models. Indeed, there 
are two senses in which the literature focuses on different issues. First, it appears to be more concerned with explaining
behavior than with predicting it. Thus, comparisons of out-of-sample prediction performance were rare. Here we describe 
the only exceptions that we found:

• Stahl and Wilson (1995) evaluated prediction performance on 3 games using parameters fit from the other games;
• Morgan and Sefton (2002) and Hahn et al. (2010) evaluated prediction performance using held-out test data;
• Camerer et al. (2004) and Chong et al. (2005) computed likelihoods on each individual game in their datasets after 

using models fit to the n − 1 remaining games;


