Mechanism Design

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §10.1-10.4.2

Lecture Outline

- 1. Recap & Logistics
- 2. Mechanism Design
- 3. Quasilinear Mechanism Design

Logistics

- the usual time
- Assignment #2 will be released on Friday
- You should have received solutions for assignment #1 by email
- Instruction Feedback either today or tomorrow

• Midterm is this Thursday, Feb 14, in the usual classroom at

You should receive an email about Mid-term Course and

Recap: Social Choice

- *N*={1,2,..,*n*} is a set of **agents**
- O is a finite set of **outcomes**
- L is the set of non-strict total orderings over O.

Definition: A social welfare function is a function $C: L^n \rightarrow L$, where N, O, and L are as above.

Notation:

We will denote *i*'s preference order as $\geq_i \in L$, and a profile of preference orders as $[\geq] \in L^n$.

Definition: A social choice function is a function $C: L^n \rightarrow O$, where

Recap: Voting Scheme Properties

Definition:

W is **Pareto efficient** if for any $O_1, O_2 \in O$,

Definition:

W is independent of irrelevant alternatives if, for any $o_1, o_2 \in O$ and any two preference profiles $[>'], [>''] \in L$,

 $(\forall i \in N : o_1 \succ'_i o_2 \iff o_1 \succ''_i o_2) \implies (o_1 \succ_{W[\succ']} o_2 \iff o_1 \succ_{W[\succ'']} o_2)$

Definition: W does not have a **dictator** if

 $\neg i \in N : \forall [\succ] \in L^n : \forall o_1, o_2 \in O : (o_1 \succ_i o_2) \implies (o_1 \succ_W o_2)$

- $(\forall i \in N : o_1 \succ o_2) \implies (o_1 \succ_W o_2)$

Recap: Arrow's Theorem

Theorem: (Arrow, 1951) If |O| > 2, any social welfare function that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

full social welfare functions doesn't help.

Theorem: (Muller-Satterthwaite, 1977) If |O| > 2, any social choice function that is weakly Pareto efficient and monotonic is dictatorial.

Unfortunately, restricting to social choice functions instead of

Mechanism Design

- In the social choice lecture, we assumed that agents report their preferences **truthfully**
- We now allow agents to report their preferences strategically
- Which social choice functions are implementable in this new setting?

Bayesian Game Setting

Definition: A **Bayesian game setting** is a tuple (N,O,Θ,p,u) where

- N is a finite set of n agents,
- O is a set of **outcomes**,
- $\Theta = \Theta_1 \times ... \times \Theta_n$ is a set of possible joint type vectors,
- p is a common prior distribution over Θ , and
- $u = (u_1, ..., u_n)$, where $u_i : O \rightarrow \mathbb{R}$ is the **utility function** for player *i*.

This differs from a Bayesian game only in that utilities are defined on outcomes rather than **actions**, and agents are not (yet) endowed with an action set.

Mechanism

Definition: A **mechanism** for a Bayesian gar where

- $A = A_1 \times \ldots \times A_n$, where A_i is and
- M: A → ∆(O) maps each ac outcomes

Intuitively, a **mechanism designer** (sometimes called the **center**) needs to decide among outcomes in some Bayesian game setting, and so they design a mechanism that **implements** some social choice function.

A mechanism for a Bayesian game setting (N,O,Θ,p,u) is a pair (A,M),

• $A = A_1 \times ... \times A_n$, where A_i is the set of **actions** available to agent *i*,

• $M: A \rightarrow \Delta(O)$ maps each action profile to a distribution over

Dominant Strategy Implementation

Definition:

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M)is an **implementation in dominant strategies** of a social choice function C (over N and O) if for any vector u of utility functions,

The Bayesian game (N, A, Θ , p, $u \cdot M$) induced by (A, M) has an equilibrium in dominant strategies, and

2. In any such equilibrium a^* , we have $M(a^*) = C(u(\cdot, \theta))$.

Bayes-Nash Implementation

Definition:

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M)is an **implementation in Bayes-Nash equilibrium** of a social choice function C (over N and O) if

- arise in equilibrium, $M(a) = C(u(\cdot, \theta))$.

1. There exists a Bayes-Nash equilibrium of the Bayesian game (N, A, Θ , p, $u \cdot M$) induced by (A, M) such that

2. for every type profile $\theta \in \Theta$ and action profile $a \in A$ that can

Direct Mechanisms

- The space of all functions that map ad about
- Fortunately, we can restrict ourselves truthful, direct mechanisms

Definition: A direct mechanism is one in which $A_i = \Theta_i$ for all agents *i*.

Definition:

A direct mechanism is **truthful** (or **incentive compatible**) if, for all type profiles $\theta \in \Theta$, it is a dominant strategy in the game induced by the mechanism for each agent to report their true type.

Definition:

A direct mechanism is **Bayes-Nash incentive compatible** if there exists a Bayes-Nash equilibrium of the induced game in which every agent always truthfully reports their type.

• The space of all functions that map actions to outcomes is impossibly large to reason

• Fortunately, we can restrict ourselves without loss of generality to the class of

Revelation Principle

Theorem: (Revelation Principle) If there exists any mechanism that implements a social choice function *C* in dominant strategies, then there exists a direct mechanism that implements *C* in dominant strategies and is truthful.

Revelation Principle Proof

- 1. Let (A, M) be a mechanism that implements C in Bayesian game setting (N, O, Θ, p, u) .
- 2. Construct the **revelation mechanism** (Θ, M') as follows:
 - For each type profile θ , let $a^*(\theta)$ be the strategy profile in which every agent plays their dominant strategy in the game induced by (A, M).
 - Let $M'(\theta) = M(a^*(\theta))$.
- 3. Each agent reporting type $\hat{\theta}_i$ will yield the same outcome as every agent of type $\hat{\theta}_i$ playing their dominant strategy in M
- 4. So it is a dominant strategy for each agent to report their true type $\hat{\theta}_i = \theta_i$.

implementation.

Exact same argument can be followed for Bayes-Nash incentive compatible direct

General Dominant-Strategy Implementation

Theorem: (Gibbard-Satterthwaite) Consider any social choice function C over N and O. If

1. |O| > 2 (there are at least three outcomes),

- preference profile [>] such that C([>]) = 0
- 3. C is dominant-strategy **truthful**,

then C is **dictatorial**.

```
2. C is onto; that is, for every outcome o \in O there is a
(this is sometimes called citizen sovereignty), and
```

Hold On A Second

- Second Price Auction
 - Outcomes are { (*i* gets object, pays x) | $i \in N$, $x \in \mathbb{R}$ }
 - **Types** are $\theta_i = \mathbb{R}$, where an agent *i* with type *x* prefers all outcomes where *i* gets object for $\leq \$x$ to all outcomes where *i* does not get *x* to all outcomes where *i* gets x for > \$x.

 - **Actions:** Agents directly announce their type via sealed bid
- **Question:** Why is this not ruled out by Gibbard-Satterthwaite?

Haven't we already seen an example of a dominant-strategy truthful direct mechanism?

• **Social choice function**: Assign the item to the agent with the highest type

- outcomes
- can circumvent Gibbard-Satterthwaite

Restricted Preferences

 Gibbard-Satterthwaite only applies to social choice functions that operate on every possible preference ordering over the

• By restricting the set of preferences that we operate over, we

Quasilinear Preferences

Definition:

Agents have quasilinear utility functions (or quasilinear preferences) in an *n*-player Bayesian game setting when

- 1. the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X,
- 2. the utility of agent *i* given joint type θ for an element $(x,p) \in O$ is $U_i(O, \theta) = V_i(X, \theta) - f_i(\rho_i)$, where
- 3. $v_i: X \times \Theta \rightarrow \mathbb{R}$ is an arbitrary function, and
- 4. $f_i : \mathbb{R}^n \to \mathbb{R}$ is a monotonically increasing function.

Quasilinear Preferences, informally

- Intuitively: Agents preferences are split into
 - 1. finite set of **nonmonetary** outcomes (e.g., allocation of an object)
 - 2. monetary **payment** made to the center (possibly negative)
- These two preferences are **linearly** related
- Agents are permitted arbitrary preferences over nonmonetary outcomes, but not over payments
- Agents care only about the outcome selected and their own payment
- If every agent has linear utility for money with the same slope, then we are in the **transferrable utility** setting

Direct Quasilinear Mechanism

Definition: A direct quasilinear mechanism is a pair (χ , p), where

- of reported types to a distribution over nonmonetary outcomes, and
- of reported types to a payment for each agent.

• $\chi: \Theta \to \Delta(X)$ is the **choice rule**, which maps from a profile

• $p: \Theta \to \mathbb{R}^n$ is the **payment rule**, which maps from a profile

Groves Mechanisms

Definition: which

$$\chi(\hat{v}) = \arg\max_{x} \sum_{i} \hat{v}_{i}(x)$$
$$p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

• Groves mechanisms implement any social welfare

Groves mechanisms are direct quasilinear mechanisms (χ ,p) for

maximizing choice function in **dominant strategies** (why?)

Vickrey-Clarke-Groves Mechanism

Definition:

The Vickery-Clarke-Groves mechanism is a direct quasilinear mechanism (χ, p) , where

$$\chi(\hat{v}) = \arg \max_{x} \sum_{i} \hat{v}_{i}(x)$$
$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- weren't there and the agents' utility now that *i* is there
 - Each agent pays their **externality**
- **Question:** Why don't we use this for **everything**?

Each agent *i* pays the difference between the other agents' utility if *i*

Second Price Auctions Are VCG

- setting

- the outcome would be no different

The second price auction is VCG in the single-item auction

• Object is awarded to agent with **highest valuation**; this maximizes the sum of agent valuations for the outcome

 Externality of winning agent is the value that next-highestvaluation agent could have gotten by winning the auction

• Externality of **losing agent** is nothing; if they weren't there,

Summary

- agents to provide input to a social choice function
- truthful direct mechanisms without loss of generality
- Non-dictatorial dominant-strategy mechanism design is **impossible in general** (Gibbard-Satterthwaite)
- Groves mechanisms (especially VCG) implement any

• Mechanism design: Setting up a system for strategic

• **Revelation Principle** means we can restrict ourselves to

welfare-maximizing social choice function in dominant strategies for special case of **quasi-linear preferences**