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Assignment #1

• Assignment #1 is released today  
See the website under Assignments (or on the Schedule) 

• Due February 5 before lecture



Recap: Solution Concepts
• Maxmin strategies maximize an agent's guaranteed payoff 

• Minmax strategies minimize the other agent's payoff as much as possible 

• The Minimax Theorem:  

• Maxmin and minmax strategies are the only Nash equilibrium strategies in 
zero-sum games 

• Every Nash equilibrium in a zero-sum game has the same payoff 

• Dominated strategies can be removed iteratively without strategically changing 
the game (too much) 

• Rationalizable strategies are any that are a best response to some 
rational belief



Lecture Outline
1. Recap & Logistics 

2. 𝜀-Nash Equilibrium 

3. Correlated Equilibrium 

4. Linear Programming 

5. Computing Nash Equilibrium  

6. Computing Correlated Equilbrium



𝜀-Nash Equilibrium
• In a Nash equilibrium, agents best respond perfectly 

• What if they are indifferent to very small gains in utility? 

• Could reflect modelling error (e.g., unmodelled cost of 
computational effort) 

Definition: 
For any 𝜀 > 0, a strategy profile s is an 𝜀-Nash equilibrium if, 
for all agents i and strategies s'i ≠ si, 
  
                                    ui(si, s-i) ≥ ui(s'i, s-i) - 𝜀.

Questions: 

For a given 𝜀>0, 

1. Is an 𝜀-Nash 
equilibrium 
guaranteed to 
exist? 

2. Is more than one 
𝜀-Nash equilibrium 
guaranteed to 
exist?  



• Every Nash equilibrium is surrounded by a region of 𝜀-Nash equilibria 

• Every numerical algorithm for computing Nash equilibrium actually 
computes 𝜀-Nash equilibrium 

• However, the reverse is not true!  Payoffs from an 𝜀-Nash equilibrium can be 
arbitrarily far from Nash equilibrium payoffs.

𝜀-Nash Equilibrium Example
L R

U 1, 1 0, 0

D 1+(𝜀/2), 1 500, 500

Questions: 

1. What are the Nash 
equilibria of this game? 

2. What are the 𝜀-Nash 
equilibria of this game?



Correlated Equilibrium
• In the unique mixed strategy equilibrium of Battle of the Sexes, each player gets a 

utility of 2/3 

• If the players could first observe a coin flip, they could coordinate on which pure 
strategy equilibrium to play 

• Each would get utility of 1.5 

• Fairer than either pure strategy equilibrium,  
and Pareto dominates the mixed strategy equilibrium 

• Correlated equilibrium is a solution concept in which agents get private, 
potentially-correlated signals before choosing their action 

• In both of these example, each agent sees the same signal perfectly, but that 
is not necessary in general

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

Go Wait

Go -10, -10 1, 0

Wait 0, 1 -1, -1



Correlated Equilibrium
Definition:  
Given an n-agent game G=(N,A,u), a correlated equilibrium is a tuple              
where  

•   

•   

•   

•   

(v, π, σ),

v = (v1, …, vn) is a tuple of random variables with domains (D1, …, Dn),

π is a joint distribution over v,

σ = (σ1, …, σn) is a vector of mappings σi : Di → Ai,  and

for every agent i and mapping σ′�i : Di → Ai,

∑
d∈D1×⋯×Dn

π(d)ui(σ1(d1), …, σn(dn)) ≥ ∑
d∈D1×⋯×Dn

π(d)ui(σ1(d1), …, σ′ �i(di), …, σn(dn))



Correlated Equilibrium 
Properties

Theorem: 
For every Nash equilibrium, there exists a corresponding 
correlated equilibrium in which each action profile appears with 
the same frequency. 

Theorem: 
Any convex combination of correlated equilibrium payoffs can 
be realized in some correlated equilibrium.



Linear Programming
Definition: 
A linear program consists of 

• A set of real-valued variables   

• A linear objective function defined by weights  

• A set of linear constraints of the form  

Sample: 

{x1, …, xn}

{w1, …, wn}
n

∑
j=1

ajxj ≤ b

maximize 
n

∑
j=1

wjxj

subject to 
n

∑
j=1

aijxj ≤ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n



Linear Program 
Properties

• Linear programs can be solved in polynomial time by generic algorithms 
(e.g., ellipsoid algorithm) 

• So writing a problem as a linear program constitutes a proof that it is 
solvable in polynomial time 

• Negating weights wj allows us to minimize the objective 

• Negating constraint coefficients aij allows for greater-than-or-equal 
constraints 

• Providing both greater-than-or-equal and less-than-or-equal constraints 
allows for equality constraints 

• Cannot always express strict inequalities (although there are tricks)

maximize 
n

∑
j=1

wjxj

subject to 
n

∑
j=1

aijxj ≤ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n



Computing Nash Equilibrium

• The problem of computing a Nash equilibrium is known to be 
computationally hard (PPAD-complete) 

• Even for two-player games! 

• But there are some special cases that we can compute 
efficiently



minimize U*1
subject to  ∑

a2∈A2

u1(a1, a2)s2(a2) ≤ U*1 ∀a1 ∈ A1

∑
a2∈A2

s2(a2) = 1

s2(a2) ≥ 0 ∀a2 ∈ A2

minimize U*1
subject to  ∑

a2∈A2

u1(a1, a2)s2(a2) ≤ U*1 ∀a1 ∈ A1

∑
a2∈A2

s2(a2) = 1

s2(a2) ≥ 0 ∀a2 ∈ A2

Computing Nash Equilibrium: 
Zero-Sum Games

• This linear program computes U*1, player 1's minmax value,  
and s2, player 2's minmax strategy against player 1 

• By the minimax theorem, this is player 2's equilibrium strategy 

• Compute player 1's equilibrium strategy analogously



Computing Maxmin Strategies: 
Two-Player, General-Sum Games
• We can efficiently compute the maxmin strategies for agents in a 

two-player zero-sum game 

• The maxmin strategy for an agent in a general-sum game is their 
best response to an imaginary agent that is trying to hurt them 

• To compute player 1's maxmin strategy in a general-sum game: 

1. Construct a zero-sum game from player 1's payoffs,  

2. Find player 1's minmax strategy in the constructed 
game (using the program from the previous slide)



∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) = vi ∀i ∈ {1,2}, ai ∈ σi

∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) ≤ vi ∀i ∈ {1,2}, ai ∉ σi

si(ai) ≥ 0 ∀i ∈ {1,2}, ai ∈ σi

si(ai) = 0 ∀i ∈ {1,2}, ai ∉ σi

∑
ai∈Ai

si(ai) = 1 ∀i ∈ {1,2}

∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) = vi ∀i ∈ {1,2}, ai ∈ σi

∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) ≤ vi ∀i ∈ {1,2}, ai ∉ σi

si(ai) ≥ 0 ∀i ∈ {1,2}, ai ∈ σi

si(ai) = 0 ∀i ∈ {1,2}, ai ∉ σi

∑
ai∈Ai

si(ai) = 1 ∀i ∈ {1,2}

Computing Nash Equilibrium:  
Two-Player, General Sum Games

• Finding an equilibrium in general is hard 

• But if we already know the support of the equilibrium, 
then we can compute it efficiently in a two-player game:

Questions: 

1. Why can't we just 
set            for every 
agent and solve 
once? 

2. Why can't we just 
try every possible 
support? 

3. Why wouldn't this 
work for n-player 
games?

σi = Ai



Computing Nash Equilibrium: 
General-Sum n-Player Games
• In theory, computing an equilibrium in n-player games and two-player games 

have equal computational complexity 

• In practice, two-player games tend to be faster to solve: 

• Lemke-Howson pivoting algorithm based on a linear complementarity 
program 

• For n-player games, homotopy-following methods: 

• Construct a family of parameterized perturbations of the game, with t=0 
being a trivial game with a known equilibrium, and t=1 being the original 
game 

• Move t along [0,1], adjusting the equilibrium as you go, until you reach t=1 



Computing Correlated 
Equilibrium

• Correlated equilibria can be found efficiently even in general-
sum, n-player games 

• Every correlated equilibrium induces a probability distribution 
over action profiles 

• Corresponds to a correlated equilibrium where Nature 
randomly chooses an action profile, and the agent's signals 
are their own actions in that profile 

• So finding a distribution over action profiles in which each agent 
would always prefer to play their recommended action is 
sufficient to find a correlated equilibrium



∑
a∈A|ai∈a

p(a)ui(a) ≥ ∑
a∈A|ai∈a

p(a)ui(a′�i, a−i) ∀i ∈ N, ai, a′�i ∈ Ai

p(a) ≥ 0 ∀a ∈ A

∑
a∈A

p(a) = 1

∑
a∈A|ai∈a

p(a)ui(a) ≥ ∑
a∈A|ai∈a

p(a)ui(a′�i, a−i) ∀i ∈ N, ai, a′�i ∈ Ai

p(a) ≥ 0 ∀a ∈ A

∑
a∈A

p(a) = 1

Computing Correlated 
Equilibrium in Polynomial Time

• We could find the social-welfare-optimizing correlated 
equilibrium by adding an objective function:

maximize ∑
a∈A

p(a)∑
i∈N

ui(a)



Summary
• 𝜀-Nash equilibria: stable when agents have no deviation that gains them more than 𝜀 

• Correlated equilibria: stable when agents have signals from a possibly-correlated 
randomizing device 

• Linear programs are a flexible encoding that can always be solved in polytime 

• Finding a Nash equilibrium is computationally hard in general 

• Special cases are efficiently computable: 

• Nash equilibria in zero-sum games 

• Maxmin strategies (and values) in two-player games 

• Correlated equilibrium


