Further Solution Concepts Computational Issues

S&LB §3.4.5, 3.4.7, 4.1, 4.2.3, 4.6

CMPUT 654: Modelling Human Strategic Behaviour

Assignment #1

- Assignment #1 is released today
- Due **February 5** before lecture

See the website under Assignments (or on the Schedule)

Recap: Solution Concepts

- Maxmin strategies maximize an agent's guaranteed payoff
- Minmax strategies minimize the other agent's payoff as much as possible
- The Minimax Theorem:
 - Maxmin and minmax strategies are the only Nash equilibrium strategies in zero-sum games
 - Every Nash equilibrium in a zero-sum game has the same payoff
- **Dominated strategies** can be removed **iteratively** without strategically changing the game (too much)
- Rationalizable strategies are any that are a best response to some rational belief

Lecture Outline

- Recap & Logistics 1.
- 2. ε -Nash Equilibrium
- 3. Correlated Equilibrium
- Linear Programming 4.
- 5. Computing Nash Equilibrium
- 6. Computing Correlated Equilbrium

- In a Nash equilibrium, agents best respond perfectly
- What if they are indifferent to very small gains in utility? \bullet
 - Could reflect modelling error (e.g., unmodelled cost of computational effort)

Definition:

For any $\varepsilon > 0$, a strategy profile s is an ε -Nash equilibrium if, for all agents *i* and strategies $s'_i \neq s_i$,

 $U_i(S_i, S_{-i}) \ge U_i(S'_i, S_{-i}) - \mathcal{E}.$

Equilibrium

Questions:

For a given $\varepsilon > 0$,

1. Is an ε -Nash equilibrium guaranteed to exist?

2. Is more than one ε -Nash equilibrium guaranteed to exist?

- \bullet
 - \bullet computes ε -Nash equilibrium
- **arbitrarily far** from Nash equilibrium payoffs.

ε -Nash Equilibrium Example

R

	0, 0
), 1	500, 500

Questions:

What are the **Nash** equilibria of this game?

2. What are the ε -Nash equilibria of this game?

Every Nash equilibrium is surrounded by a region of ε -Nash equilibria

Every **numerical algorithm** for computing Nash equilibrium actually

• However, the reverse is not true! Payoffs from an ε -Nash equilibrium can be

Correlated Equilibrium

	Ballet	Soccer
Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

	Go	Wait
Go	-10, -10	1, 0
Wait	0, 1	-1, -1

- lacksquareutility of 2/3
- strategy equilibrium to play
 - Each would get utility of 1.5
- \bullet
 - is not necessary in general

In the unique mixed strategy equilibrium of Battle of the Sexes, each player gets a

If the players could first observe a coin flip, they could coordinate on which pure

• **Fairer** than either pure strategy equilibrium, and **Pareto dominates** the mixed strategy equilibrium

Correlated equilibrium is a solution concept in which agents get private, potentially-correlated **signals** before choosing their action

In both of these example, each agent sees the same signal perfectly, but that

Correlated Equilibrium

Definition:

where

- π is a joint distribution over v,
- $\sigma = (\sigma_1, \dots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \to A_i$, and
- for every agent *i* and mapping $\sigma'_i: D_i \to A_i$,

 $\pi(d)u_{i}(\sigma_{1}(d_{1}),...,\sigma_{n}(d_{n})) \geq \sum \pi(d)u_{i}(\sigma_{1}(d_{1}),...,\sigma_{i}(d_{i}),...,\sigma_{n}(d_{n}))$ $d \in D_1 \times \cdots \times D_n$ $d \in D_1 \times \cdots \times D_n$

Given an n-agent game G=(N,A,u), a correlated equilibrium is a tuple (v, π, σ) ,

• $v = (v_1, ..., v_n)$ is a tuple of random variables with domains $(D_1, ..., D_n)$,

Correlated Equilibrium Properties

Theorem:

For every **Nash equilibrium**, there exists a corresponding correlated equilibrium in which each action profile appears with the same frequency.

Theorem: be realized in some correlated equilibrium.

Any **convex combination** of correlated equilibrium payoffs can

Linear Programming

Definition:

A linear program consists of

- A set of real-valued variables $\{x_1, \ldots, x_n\}$
- A linear objective function defined by weights $\{w_1, \ldots, w_n\}$
- A set of linear **constraints** of the form $\sum_{j=1}^{n} a_j x_j \le b$

i=1

 $\forall 1 \le j \le n$

Linear Program Properties

- (e.g., ellipsoid algorithm)
 - lacksquaresolvable in polynomial time
- Negating weights w_i allows us to **minimize** the objective
- constraints
- \bullet allows for equality constraints

maximize $\sum_{i=1}^{n} w_j x_j$	
subject to $\sum_{i=1}^{n} a_{ij} x_j \le b_i$	∀1 ≤
$\begin{array}{c} j=1\\ x_j \ge 0 \end{array}$	∀1 ≤

Linear programs can be solved in **polynomial time** by generic algorithms

So writing a problem as a linear program constitutes a proof that it is

Negating constraint coefficients a_{ii} allows for greater-than-or-equal

Providing both greater-than-or-equal and less-than-or-equal constraints

• **Cannot** always express **strict** inequalities (although there are tricks)

Computing Nash Equilibrium

- **computationally hard** (PPAD-complete)
 - Even for two-player games!
- efficiently

• The problem of computing a Nash equilibrium is known to be

• But there are some **special cases** that we can compute

Computing Nash Equilibrium: Zero-Sum Games

- minimize U_1^* $a_2 \in A_2$ $\sum s_2(a_2) = 1$ $a_2 \in A_2$
 - $s_2(a_2) \ge 0$
- This linear program computes U^*_1 , player 1's minmax value, and s₂, player 2's minmax strategy against player 1
- Compute player 1's equilibrium strategy analogously

subject to $\sum u_1(a_1, a_2) s_2(a_2) \le U_1^*$ $\forall a_1 \in A_1$

 $\forall a_2 \in A_2$

• By the minimax theorem, this is player 2's equilibrium strategy

Computing Maxmin Strategies: Two-Player, General-Sum Games

- two-player **zero-sum game**

• We can efficiently compute the maxmin strategies for agents in a

• The maxmin strategy for an agent in a general-sum game is their best response to an imaginary agent that is trying to hurt them

• To compute player 1's maxmin strategy in a general-sum game:

1. Construct a **zero-sum game** from player 1's payoffs,

2. Find player 1's minmax strategy in the **constructed game** (using the program from the previous slide)

Computing Nash Equilibrium: Two-Player, General Sum Games

- Finding an equilibrium in general is hard
- But if we already know the **support** of the equilibrium, then we can compute it efficiently in a two-player game:

$$\sum_{\substack{a_{-i} \in \sigma_{-i} \\ s_{-i} \in \sigma_{-i}}} s_{-i}(a_{-i})u_i(a_i, a_{-i}) = v_i \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i$$
$$\sum_{\substack{a_{-i} \in \sigma_{-i} \\ s_i(a_i) \geq 0 \\ s_i(a_i) = 0}} s_i(a_i) = 0 \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i$$
$$\forall i \in \{1, 2\}, a_i \notin \sigma_i$$

Questions:

- 1. Why can't we just set $\sigma_i = A_i$ for every agent and solve once?
- 2. Why can't we just try every possible support?
- 3. Why wouldn't this work for *n*-player games?

Computing Nash Equilibrium: General-Sum *n*-Player Games

- have equal computational complexity
- In practice, **two-player** games tend to be faster to solve:
 - \bullet program
- For *n*-player games, **homotopy-following** methods: \bullet
 - \bullet game

• In theory, computing an equilibrium in *n*-player games and two-player games

Lemke-Howson pivoting algorithm based on a linear complementarity

Construct a family of parameterized **perturbations** of the game, with t=0being a trivial game with a known equilibrium, and t=1 being the original

• Move t along [0,1], adjusting the equilibrium as you go, until you reach t=1

Computing Correlated Equilibrium

- Correlated equilibria can be found efficiently even in generalsum, *n*-player games
- Every correlated equilibrium induces a probability distribution over **action profiles**
 - Corresponds to a correlated equilibrium where Nature randomly chooses an action profile, and the agent's signals are their own actions in that profile
- So finding a distribution over action profiles in which each agent would always prefer to play their recommended action is sufficient to find a correlated equilibrium

Computing Correlated Equilibrium in Polynomial Time

$$\sum_{a \in A \mid a_i \in a} p(a)u_i(a) \ge \sum_{a \in A \mid a_i \in a} p(a)$$

$$p(a) \ge 0$$

$$\sum_{a \in A} p(a) = 1$$

• We could find the social-welfare-optimizing correlated equilibrium by adding an **objective function**:

 $\forall (a) u_i(a'_i, a_{-i}) \qquad \forall i \in N, \ a_i, a'_i \in A_i$

 $\forall a \in A$

maximize $\sum p(a) \sum u_i(a)$ $i \in N$ $a \in A$

Summary

- ϵ -Nash equilibria: stable when agents have no deviation that gains them more than ϵ
- Correlated equilibria: stable when agents have signals from a possibly-correlated randomizing device
- Linear programs are a flexible encoding that can always be solved in polytime
- Finding a Nash equilibrium is **computationally hard** in general
- **Special cases** are efficiently computable:
 - Nash equilibria in zero-sum games
 - Maxmin strategies (and values) in two-player games
 - Correlated equilibrium