Quasilinear Mechanism Design

S&LB §10.3-10.4

CMPUT 654: Modelling Human Strategic Behaviour

Recap: Revelation Principle

Theorem: (Revelation Principle) If there exists any mechanism that implements a social choice function C in dominant strategies, then there exists a direct mechanism that implements Cin dominant strategies and is truthful.

(Image: Shoham & Leyton-Brown 2008)

Recap: General Dominant-Strategy Implementation

Theorem: (Gibbard-Satterthwaite) least three outcomes),

1. C is onto; that is, for every outcome $o \in O$ there is a preference profile [>] such that C([>]) = o (this is sometimes called **citizen** sovereignty), and

2. *C* is dominant-strategy **truthful**, then C is dictatorial.

Consider any social choice function C over N and O. If |O| > 2 (there are at

Recap: Quasilinear Preferences

Definition:

Agents have quasilinear preference when

- 1. the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X,
- 2. the utility of agent *i* given type profile θ for an element $(x, p) \in O$ is $u_i((x, p), \theta) = v_i(x, \theta) f_i(p_i)$, where
- 3. $v_i: X \times \Theta \to \mathbb{R}$ is an **arbitrary** function, and
- 4. $f_i : \mathbb{R} \to \mathbb{R}$ is a monotonically increasing function.

Agents have quasilinear preferences in an *n*-player Bayesian game setting

Recap: Direct Quasilinear Mechanism

Definition:

A direct quasilinear mechanism is a pair (χ, p) , where

- outcomes, and
- types to a payment for each agent.

• $\chi: \Theta \to \Delta(X)$ is the choice rule (often called the allocation rule), which maps from a profile of reported types to a distribution over nonmonetary

• $p: \Theta \to \mathbb{R}^n$ is the payment rule, which maps from a profile of reported

Logistics

- Next week is **reading week**; no lectures
- Assignment 2 will be released at the end of this week
 - Due Thu March 7
- On Tue Feb 27 (first day after reading week) we will choose the schedule for project presentations
 - Using the random dictatorship mechanism as for paper assignments

Paper Presentations

Paper presentations start after reading week:

- There will be 2 or 3 presentations per class
 - (Rabin 2000 is rescheduled to Oct 31)
- Each paper is allocated **25 minutes** for talk + questions \bullet
 - Budget for about a 15-20 minute talk and 5-10 minutes for questions \bullet
 - will be **ruthless** about the 25 minute time limit \bullet
- Summarize the **important parts** of the paper
- Paper summaries are due before class starts (200-500 words)
 - Submit via eClass

• The eClass assignment description will tell you what these should include

Lecture Outline

- 1. Recap & Logistics
- 2. Efficient Quasilinear Mechanisms
- 3. Properties of Quasilinear Mechanisms

Groves Mechanisms

Definition:

Groves mechanisms are direct quasilinear mechanisms (χ, p) for which

- $\chi(\hat{v}) = \arg$
- $p_i(\hat{v}) = h_i(\hat{v})$
- function in **dominant strategies**

$$\max_{x} \sum_{i} \hat{v}_{i}(x)$$
$$\hat{v}_{-i}(x) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

• Where h_i is an **arbitrary** function of the reports of the other agents

Groves mechanisms implement any social welfare maximizing choice

Proof Sketch: Dominant Strategies

1. Suppose that every other agent j declares arbitrary \hat{v}_j

2. Agent *i* wants to report \hat{v}_i that solv

3. Substitute
$$p_i: \max_{\hat{v}_i} \left(v_i(\hat{v}_i, \hat{v}_{-i})) - h_i(\hat{v}_{-i}) + \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}_i, \hat{v}_{-i})) \right)$$

4. $h_i(\hat{v}_{-i})$ doesn't depend on \hat{v}_i

$$\operatorname{ves}\max_{\hat{v}_i}\left(v_i\left(\chi(\hat{v}_i,\hat{v}_{-i})\right) - p_i(\hat{v}_i,\hat{v}_{-i})\right).$$

Proof S

5. So *i* should report arg n

6. But Groves will choose arg m $\chi(\hat{v}_i)$

7. So *i* should report $\hat{v}_i = v_i$.

Dominant strategies, because this argument is for arbitrary \hat{v}_{-i} .

Sketch #2

$$\max_{\hat{v}_{i}} \left(v_{i} \left(\chi(\hat{v}_{i}, \hat{v}_{-i}) \right) + \sum_{j \neq i} \hat{v}_{j} \left(\chi(\hat{v}_{i}, \hat{v}_{-i}) \right) \right)$$

$$\max_{i, \hat{v}_{-i}} \left(\hat{v}_{i} \left(\chi(\hat{v}_{i}, \hat{v}_{-i}) \right) + \sum_{j \neq i} \hat{v}_{j} \left(\chi(\hat{v}_{i}, \hat{v}_{-i}) \right) \right)$$

Vickrey-Clarke-Groves Mechanism

Definition:

The Vickery-Clarke-Groves mechanism is a direct quasilinear mechanism (χ, p) , where

$$\chi(\hat{v}) = \arg \max_{x} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$
namism with $h_{i}(\hat{v}_{-i}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})).$

- i.e., it's a Groves mech
- there and the other agents' utility given that *i* is there.
- **Question:** Why don't we use this for **everything**?

• Each agent pays their externality: difference between other agents' utility if *i* weren't

Second Price Auctions Are VCG

The second price auction is VC setting:

- Agents are not permitted unrestricted preferences over the outcome space of allocations and payments
- Object is awarded to agent with highest valuation; this maximizes the sum of (non-monetary) agent valuations for the outcome
- Externality of winning agent is the value that next-highest-valuation agent could have gotten by winning the auction
- Externality of **losing agent** is nothing; if they weren't there, the outcome would be no different

The second price auction is VCG in the quasilinear single-item auction

Externalities: Example

- 1. Who wins the second-price auction? i.e., $\chi(\hat{v})$
- 2. Who would win if Alice weren't in the auction? i.e., $\chi(\hat{v}_{-Alice})$
- 3. How much does Alice pay?
- 4. What is the VCG payment?

 v_{Alice} (Alice gets object) = 10 v_{Bob} (Bob gets object) = 6 v_{Carol} (Carol gets object) = 3 v_{Dave} (Dave gets object) = 1

Mechanism Properties

Definition:

equilibrium strategy is to adopt the strategy $\hat{v}_i = v_i$.

Definition:

equilibrium it selects a choice x such that

- A quasilinear mechanism is **truthful** if it is direct and $\forall i \in N, \forall v_i$, agent *i*'s
- A quasilinear mechanism is **Pareto efficient**, or just **efficient**, if for all v in

$$(x) \ge \sum_{i} v_i(x').$$

Budget Balance

Definition: A quasilinear mechanism is weakly budget balanced when

where s^* is the equilibrium strategy profile.

 $\forall v, \sum_{i} p_i(s^*(v)) \ge 0,$

Definition:

A quasilinear mechanism is *ex-interim* individually rational when

$$\forall i \forall v_i, \mathbb{E}_{v_{-i}|v_i} \left[v_i(\chi(s_i(v_i), s_{-i}(v_{-i}))) - p_i(s_i(v_i), s_{-i}(v_{-i})) \right] \ge 0.$$

Individual Rationality

All Efficient Dominant Strategy Mechanisms are Groves Mechanisms

Theorem: (Green-Laffont)

$$p_i(\hat{v}) = h_i(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v})).$$

An efficient social choice function $C : \mathbb{R}^{X \times N} \to X \times \mathbb{R}^N$ can be implemented in dominant strategies for agents with unrestricted quasilinear utilities only if

One Last Impossibility Result

Theorem: (Myerson-Satterthwaite) agents are restricted to quasilinear utility functions.

- It does turn out to be possible to get any two of the three
- **Question:** Wait a minute, doesn't the second-price auction satisfy all \bullet three conditions?
- No Bayes-Nash incentive-compatible mechanism is always simultaneously efficient, weakly budget-balanced, and ex-interim individually rational, even if

Summary

- functions *can* be implemented in **dominant strategies**
- **Groves mechanisms** are the unique class of mechanisms that implement \bullet efficient social choice functions in dominant strategies
 - **VCG** is the pre-eminent Groves mechanism
 - Second-price auctions turn out to be VCG in the single-item auction setting
- You can only have two of efficiency, weak budget balance, and ex*interim* individual rationality, even in the quasilinear setting

• When agents are restricted to quasilinear preferences, social choice