
Final Exam Review

CMPUT 366: Intelligent Systems

Weeks 1-13

Lecture Structure

1. Imperfect information extensive form games

2. Exam structure and details

3. Learning objectives walkthrough

• Clarifying questions are the point of this class

4. Other questions, clarifications

Final Exam Details
• The final exam is Wednesday, April 28 via eClass

• There will be a 6 hour time limit for the exam

• Starting at any time between 12:01am and 11:59pm Mountain time

• It should not take anywhere near this long (I aimed for it to take 2 hours)

• You may use a single, handwritten cheat sheet if you wish

• You may use a non-programmable calculator if you wish

• All course material is included

• Weeks 8-13 will be more heavily weighted than weeks 1-7

Final Exam Structure
• There will be 120 marks total

• There will be 15 short answer questions with 1-2 sentence answers

• The rest will be more in-depth

• There will be no coding questions

• But you may be asked to execute a few steps of an algorithm

• Every question will be based on the learning objectives that we are about
to walk through

• There will be five marks for uploading a picture of your cheat sheet

Recap: Perfect Information
Extensive Form Game

Definition:
A finite perfect-information game in extensive form is a tuple

where

• is a set of players,

• is a single set of actions,

• is a set of nonterminal choice nodes,

• is a set of terminal nodes (disjoint from),

• is the action function,

• is the player function,

• is the successor function,

• is a utility function for each player,

G = (N, A, H, Z, χ, ρ, σ, u),

N n

A

H

Z H

χ : H → 2A

ρ : H → N

σ : H × A → H ∪ Z

u = (u1, u2, …, un) ui : Z → ℝ

5.1 Perfect-information extensive-form games 119

•1

2–0
1–1

0–2

•2

no yes

•2

no yes

•2

no yes

•
(0,0)

•
(2,0)

•
(0,0)

•
(1,1)

•
(0,0)

•
(0,2)

Figure 5.1: The Sharing game.

5.1.2 Strategies and equilibria

A pure strategy for a player in a perfect-information game is a complete specifica-
tion of which deterministic action to take at every node belonging to that player. A
more formal definition follows.

Definition 5.1.2 (Pure strategies) Let G = (N,A,H,Z,χ, ρ,σ, u) be a perfect-
information extensive-form game. Then the pure strategies of player i consist of
the Cartesian product

∏
h∈H,ρ(h)=i χ(h).

Notice that the definition contains a subtlety. An agent’s strategy requires a
decision at each choice node, regardless of whether or not it is possible to reach
that node given the other choice nodes. In the Sharing game above the situation
is straightforward—player 1 has three pure strategies, and player 2 has eight, as
follows.

S1 = {2–0, 1–1, 0–2}

S2 = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes, yes),
(no, yes, no), (no, no, yes), (no, no, no)}

But now consider the game shown in Figure 5.2.
In order to define a complete strategy for this game, each of the players must

choose an action at each of his two choice nodes. Thus we can enumerate the pure
strategies of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}

S2 = {(C,E), (C,F), (D,E), (D,F)}

It is important to note that we have to include the strategies (A,G) and (A,H),
even though once player 1 has chosen A then his own G-versus-H choice is moot.
The definition of best response and Nash equilibria in this game are exactly

as they are for normal-form games. Indeed, this example illustrates how every

Multiagent Systems, draft of May 28, 2008

All
Half

None

Imperfect Information, informally
• Perfect information games model sequential actions that are observed by

all players

• Randomness can be modelled by a special Nature player with constant
utility and known mixed strategy

• But many games involve hidden actions

• Cribbage, poker, Scrabble

• Sometimes actions of the players are hidden, sometimes Nature's actions
are hidden, sometimes both

• Imperfect information extensive form games are a model of games with
sequential actions, some of which may be hidden

Imperfect Information
Extensive Form Game

Definition:
An imperfect information game in extensive form is a tuple

where

• is a perfect information extensive form game, and

• , where is an equivalence relation on
(i.e., partition of) with the property that
and whenever there exists a for which and

.

G = (N, A, H, Z, χ, ρ, σ, u, I),

(N, A, H, Z, χ, ρ, σ, u)

I = (I1, …, In) Ii = (Ii,1, …, Ii,ki
)

{h ∈ H : ρ(h) = i} χ(h) = χ(h′)
ρ(h) = ρ(h′) j ∈ N h ∈ Ii,j

h′ ∈ Ii,j

Imperfect Information Extensive
Form Example

• The members of the equivalence classes are also called information sets

• Players cannot distinguish which history they are in within an information set

• Question: What are the information sets for each player in this game?

5.2 Imperfect-information extensive-form games 131

•1

L R

•2

A B

•
(1,1)

•1

! r

•1

! r

•
(0,0)

•
(2,4)

•
(2,4)

•
(0,0)

Figure 5.10: An imperfect-information game.

We can regard player 1 as not knowing whether player 2 chose A or B when he
makes her choice between ! and r.

5.2.2 Strategies and equilibria

A pure strategy for an agent in an imperfect-information game selects one of the
available actions in each information set of that agent.

Definition 5.2.2 (Pure strategies) LetG = (N,A,H,Z,χ, ρ,σ, u, I) be an imperfect-
information extensive-form game. Then the pure strategies of player i consist of
the Cartesian product

∏
Ii,j∈Ii

χ(Ii,j).

Thus perfect-information games can be thought of as a special case of imperfect-
information games, in which every equivalence class of each partition is a single-
ton.
Consider again the Prisoner’s Dilemma game, shown as a normal-form game in

Figure 3.3. An equivalent imperfect-information game in extensive form is given
in Figure 5.11.
Note that we could have chosen to make player 2 choose first and player 1 choose

second.
Recall that perfect-information games were not expressive enough to capture

the Prisoner’s Dilemma game and many other ones. In contrast, as is obvious from
this example, any normal-form game can be trivially transformed into an equiva-
lent imperfect-information game. However, this example is also special in that the
Prisoner’s Dilemma is a game with a dominant strategy solution, and thus in par-
ticular a pure-strategy Nash equilibrium. This is not true in general for imperfect-
information games. To be precise about the equivalence between a normal-form
game and its extensive-form image we must consider mixed strategies, and this is
where we encounter a new subtlety.

Multiagent Systems, draft of May 28, 2008

Pure Strategies
Question: What are the pure strategies in an
imperfect information extensive-form game?

Definition:
Let be an imperfect information
game in extensive form. Then the pure strategies of player
consist of the cross product of actions available to player at each
of their information sets, i.e.,

• A pure strategy associates an action with each information set,
even those that will never be reached

G = (N, A, H, Z, χ, ρ, σ, u, I)
i

i

∏
Ii,j∈Ii

χ(h)

Questions:

In an imperfect
information game:

1. What are the
mixed strategies?

2. What is a
best response?

3. What is a
Nash equilibrium?

Induced Normal Form

• Any pair of pure strategies uniquely identifies a terminal node, which identifies a
utility for each agent

• We have now defined a set of agents, pure strategies, and utility functions

• Any extensive form game defines a corresponding induced normal form game

A B

L,ℓ 0,0 2,4

L,r 2,4 0,0

R,ℓ 1,1 1,1

R,r 1,1 1,1

5.2 Imperfect-information extensive-form games 131

•1

L R

•2

A B

•
(1,1)

•1

! r

•1

! r

•
(0,0)

•
(2,4)

•
(2,4)

•
(0,0)

Figure 5.10: An imperfect-information game.

We can regard player 1 as not knowing whether player 2 chose A or B when he
makes her choice between ! and r.

5.2.2 Strategies and equilibria

A pure strategy for an agent in an imperfect-information game selects one of the
available actions in each information set of that agent.

Definition 5.2.2 (Pure strategies) LetG = (N,A,H,Z,χ, ρ,σ, u, I) be an imperfect-
information extensive-form game. Then the pure strategies of player i consist of
the Cartesian product

∏
Ii,j∈Ii

χ(Ii,j).

Thus perfect-information games can be thought of as a special case of imperfect-
information games, in which every equivalence class of each partition is a single-
ton.
Consider again the Prisoner’s Dilemma game, shown as a normal-form game in

Figure 3.3. An equivalent imperfect-information game in extensive form is given
in Figure 5.11.
Note that we could have chosen to make player 2 choose first and player 1 choose

second.
Recall that perfect-information games were not expressive enough to capture

the Prisoner’s Dilemma game and many other ones. In contrast, as is obvious from
this example, any normal-form game can be trivially transformed into an equiva-
lent imperfect-information game. However, this example is also special in that the
Prisoner’s Dilemma is a game with a dominant strategy solution, and thus in par-
ticular a pure-strategy Nash equilibrium. This is not true in general for imperfect-
information games. To be precise about the equivalence between a normal-form
game and its extensive-form image we must consider mixed strategies, and this is
where we encounter a new subtlety.

Multiagent Systems, draft of May 28, 2008

Question: 
Can you represent
an arbitrary perfect
information
extensive form game
as an imperfect
information game?

Extensive Form Games Summary
• Extensive form games model sequential actions

• Pure strategies for extensive form games map choice nodes to actions

• Induced normal form: normal form game with these pure strategies

• Notions of mixed strategy, best response, etc. translate directly

• Perfect information: Every agent sees all actions of the other players

• Backward induction computes a pure strategy Nash equilibrium for any
perfect information extensive form game

• Imperfect information: Some actions are hidden

• Histories are partitioned into information sets; players cannot distinguish
between histories in the same information set

Introduction to AI

• characterize simplifying assumptions made in building AI systems

• determine what simplifying assumptions particular AI systems are making

• suggest what assumptions to lift to build a more intelligent system than an
existing one

• define the major representational dimensions

• classify problem statements by representational dimensions

Search

• define a directed graph

• represent a problem as a state-space graph

• explain how a generic searching algorithm works

Search (2)

• demonstrate how depth-first search will work on a graph

• demonstrate how breadth-first search will work on a graph

• demonstrate how iterative deepening DFS will work

• demonstrate how least cost first search will work on a graph

• predict the space and time requirements for depth-first and breadth-first
searches

Search (3)

• devise a useful heuristic function for a problem

• demonstrate how best-first and A* search will work on a graph

• predict the space and time requirements for best-first and A* search

• justify why and when depth-bounded search is useful

• demonstrate how iterative-deepening works for a particular problem

• demonstrate how depth-first branch-and-bound works for a particular
problem

Search (4)

• define hill climbing, random step, random restart

• explain why hill climbining is not complete

• explain why adding random restarts to hill climbing makes it complete

• justify when local search is appropriate for a given problem

Search (5)
• list the elements of a local search problem

• recognize a local search problem

• explain how the generic local search algorithm works

• define hill climbing and stochastic local search

• trace an execution of hill-climbing and stochastic local search

• define improving step, random step, and random restart

• explain the benefits of random steps and random restarts

Uncertainty

• define a random variable

• describe the semantics of probability

• apply the chain rules

• apply Bayes' theorem

Uncertainty (2)

• define a belief network

• build a belief network for a domain

• build a correct belief network for a given joint distribution

• compute marginal and conditional probabilities from a joint distribution

• describe the semantics of a belief network

• identify the independence guarantees encoded by a belief network

Uncertainty (3)

• define the factor objects and factor operations used in variable elimination

• explain the origins of the efficiency improvements of variable elimination

• define the high-level steps of variable elimination

• trace an execution of variable elimination

Uncertainty (4)

• justify why a belief network is a correct encoding of a joint distribution

• identify the factorization of a joint distribution encoded by a belief network

• answer queries about independence based on a belief network

• answer queries about independence based on a joint distribution

Causality
• define observational and causal query

• explain the difference

• explain why causal queries on observational distributions can go wrong

• construct the post-intervention distribution for a causal query from an
observational distribution

• evaluate a causal query given an observational distribution

• justify whether a causal model is valid

• define selection effect

Supervised Learning

• define supervised learning task, classification, regression, loss function

• represent categorical target values in multiple ways (indicator variables,
indexes)

• identify an appropriate loss function for different tasks

• explain why a separate test set estimates generalization performance

• define 0/1 error, absolute error, (log-)likelihood loss, mean squared error,
worst-case error

Supervised Learning (2)

• define generalization performance

• construct a decision tree using given features, splitting conditions, and
stopping conditions

• define overfitting

• explain how to avoid overfitting

Supervised Learning (3)

• explain how to use the Beta and Bernoulli distributions for Bayesian learning

• derive the posterior probability of a model using Bayes' rule

• define conjugate prior

• demonstrate model averaging

Supervised Learning (4)

• estimate expectations from a finite sample

• apply Hoeffding's inequality to derive PAC bounds for given quantities

• demonstrate the use of rejection sampling and importance sampling

Deep Learning
• define an activation

• define a rectified linear unit and give an expression for its value

• describe how the units in a feedforward network are connected

• give an expression in matrix notation for a layer of a feedforward network

• explain at a high level what the Universal Approximation Theorem means

• explain at a high level how feedforward neural networks are trained

• identify the parameters of a feedforward neural network

Deep Learning (2)

• trace an execution of forward-mode automatic differentiation

• trace an execution of backward-mode automatic differentiation

• explain why automatic differentiation is more efficient than symbolic
differentiation or the method of finite differences

• explain why backward-mode automatic differentiation is more efficient for
typical deep learning applications than forward-mode

• explain how gradient descent is used to train a neural network

Deep Learning (3)

• define sparse interactions and parameter sharing

• define the convolution operation

• define the pooling operation

• explain why convolutional networks are more efficient to train

• describe how the units/layers in a convolutional neural network are
connected

Deep Learning (4)

• demonstrate unfolding a recurrent expression

• explain the problems with handling sequence input using non-recurrent
dense or convolutional multi-layer neural networks

• describe the high-level idea behind recurrent neural networks

• explain why recurrence through outputs is strictly less general than
recurrence through hidden layers

Reinforcement Learning

• define a Markov decision process and a policy

• define and give expressions for the state-value function and the action-
value function

• state the Bellman optimality equations

• define returns and give expressions for episodic and discounted continuing
returns

• represent a problem as a Markov decision process

Reinforcement Learning (2)

• justify why a policy is weakly better than another

• trace an execution of iterative policy evaluation

• state the Policy Improvement Theorem and explain why it is important

• trace an execution of the Value Iteration algorithm

Reinforcement Learning (3)

• explain how Monte Carlo estimation for state values works

• trace an execution of the first-visit Monte Carlo Prediction algorithm

• explain the difference between prediction and control

Reinforcement Learning (4)

• define on-policy vs. off-policy learning

• define a behaviour policy

• explain what exploring starts are and why they are necessary

• define an 𝜀-soft policy

• explain when and why 𝜀-soft policies are useful

Reinforcement Learning (5)

• trace an execution of the TD(0) algorithm

• trace an execution of the Q-learning algorithm

• trace an execution of the Sarsa algorithm

• define bootstrapping

• explain why bootstrapping is useful

Reinforcement Learning (6)

• explain why function approximation is useful

• explain the difference between action-value and policy gradient methods

• trace an execution of the REINFORCE algorithm

Multiagent Systems

• define best response and Nash equilibrium

• define Pareto dominance and Pareto optimality

• explain the difference between pure strategy and mixed strategy Nash
equilibria

Multiagent Systems (2)

• trace an execution of backward induction

• explain the difference between imperfect information and perfect information
extensive form games

• define an information set

• identify the pure strategies in an extensive form game

Questions?

