Game Theory for Sequential Interactions

CMPUT 366: Intelligent Systems

S&LB §5.0-5.2.2

Lecture Outline

- 1. Recap
- 2. Perfect Information Games
- 3. Backward Induction
- 4. Imperfect Information Games

Recap: Game Theory

- Game theory studies the interactions of rational agents
 - Canonical representation is the normal form game
- Game theory uses solution concepts rather than optimal behaviour
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - Pareto optimal: no agent can be made better off without making some other agent worse off
 - Nash equilibrium: no agent regrets their strategy given the choice of the other agents' strategies

	Ballet	Soccer
Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

Mixed Strategies

Definitions:

- A strategy s_i for agent i is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.
 - Pure strategy: only a single action is played
 - Mixed strategy: randomize over multiple actions
- Set of i's strategies: $S_i \doteq \Delta(A_i)$ $\Delta(X) =$ "set of distributions over elements of X"
- Set of strategy profiles: $S = S_1 \times S_2 \times \cdots \times S_n$
- Utility of a mixed strategy profile:

$$u_i(s) \doteq \sum_{a \in A} u_i(a) \prod_{j \in N} s_j(a_j)$$

Best Response and Nash Equilibrium

Definition:

The set of i's **best responses** to a strategy profile $s \in S$ is

$$BR_i(s_{-i}) \doteq \{a_i^* \in A_i \mid u_i(a_i^*, s_{-i}) \ge u_i(a_i, s_{-i}) \ \forall a_i \in A_i \}$$

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

$$\forall i \in N, a_i \in A_i \quad s_i(a_i) > 0 \implies a_i \in BR_{-i}(s_{-i})$$

• When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Nash's Theorem

Theorem: [Nash 1951]

Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Pure strategy equilibria are not guaranteed to exist

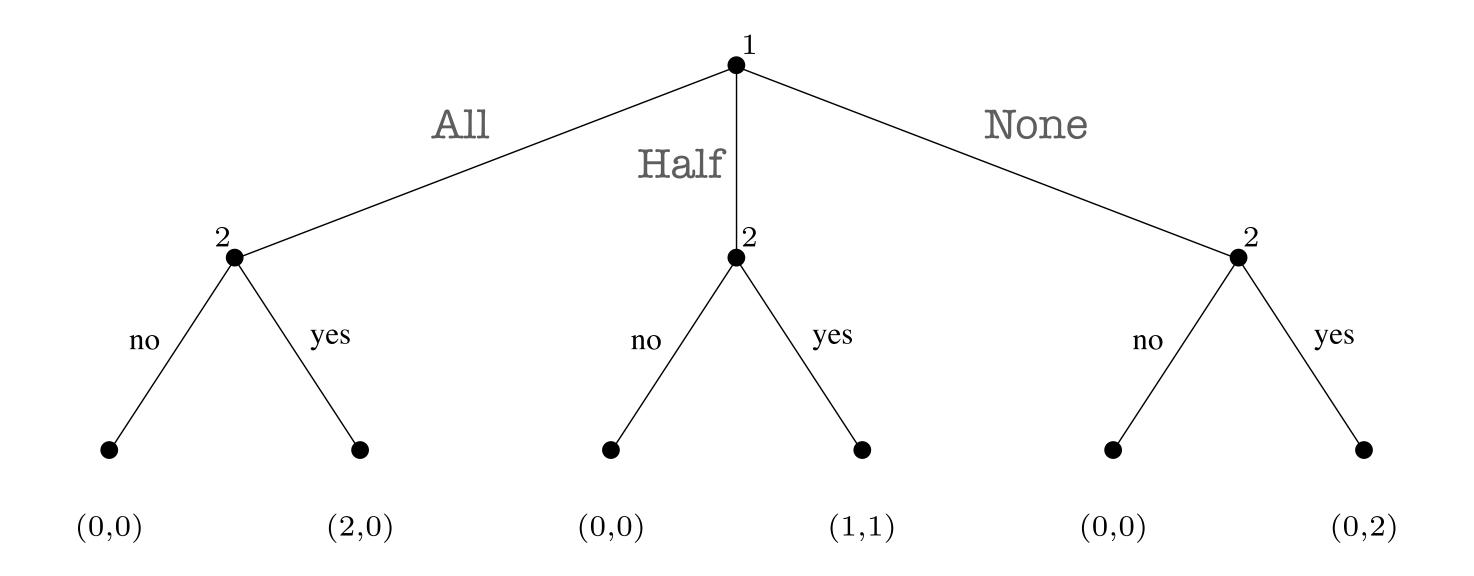
Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- They truly are **sampling a distribution** in their heads, perhaps to **confuse** their opponents (e.g., soccer, other zero-sum games)
- The distribution represents the other agents' uncertainty about what the agent will do
- The distribution is the empirical frequency of actions in repeated play
- The distribution is the frequency of a pure strategy in a **population** of pure strategies (i.e., every individual plays a pure strategy)

Extensive Form Games

- Normal form games don't have any notion of sequence: all actions happen simultaneously
- The extensive form is a game representation that explicitly includes temporal structure (i.e., a game tree)



Perfect Information

There are two kinds of extensive form game:

- 1. **Perfect information:** Every agent **sees all actions** of the other players (including "**Nature**")
 - e.g.: Chess, checkers, Pandemic
- 2. Imperfect information: Some actions are hidden
 - Players may not know exactly where they are in the tree
 - e.g.: Poker, rummy, Scrabble

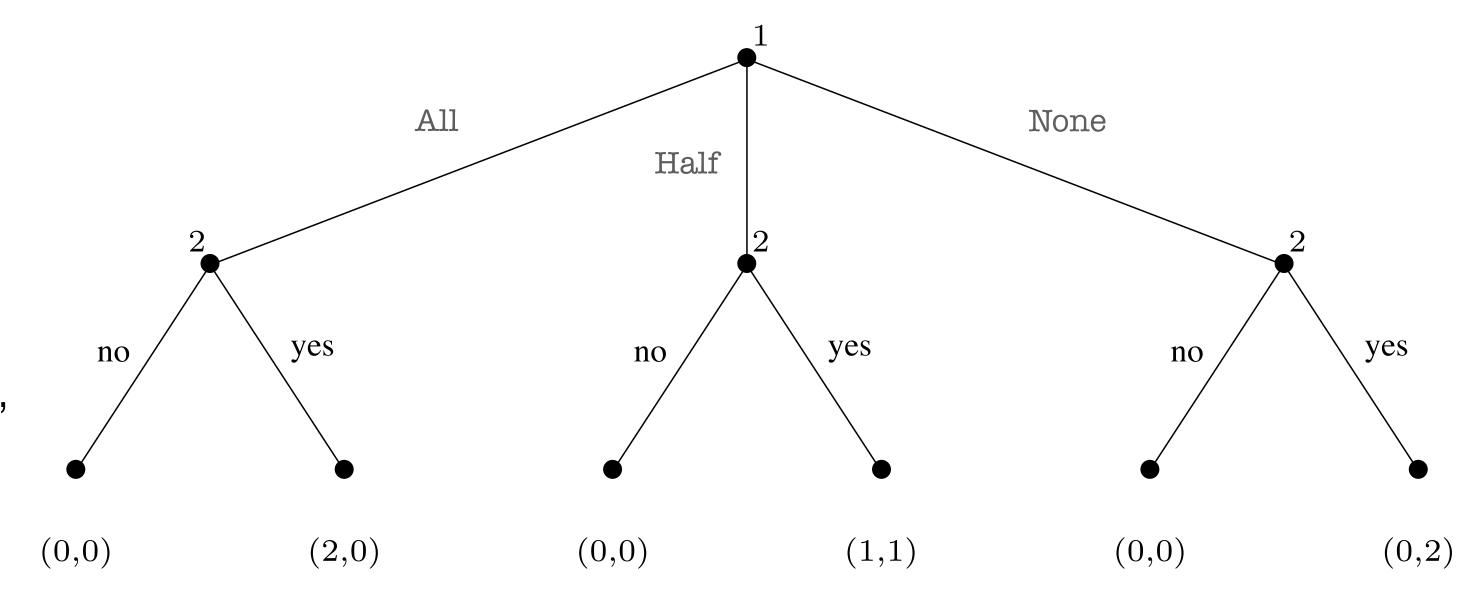
Perfect Information Extensive Form Game

Definition:

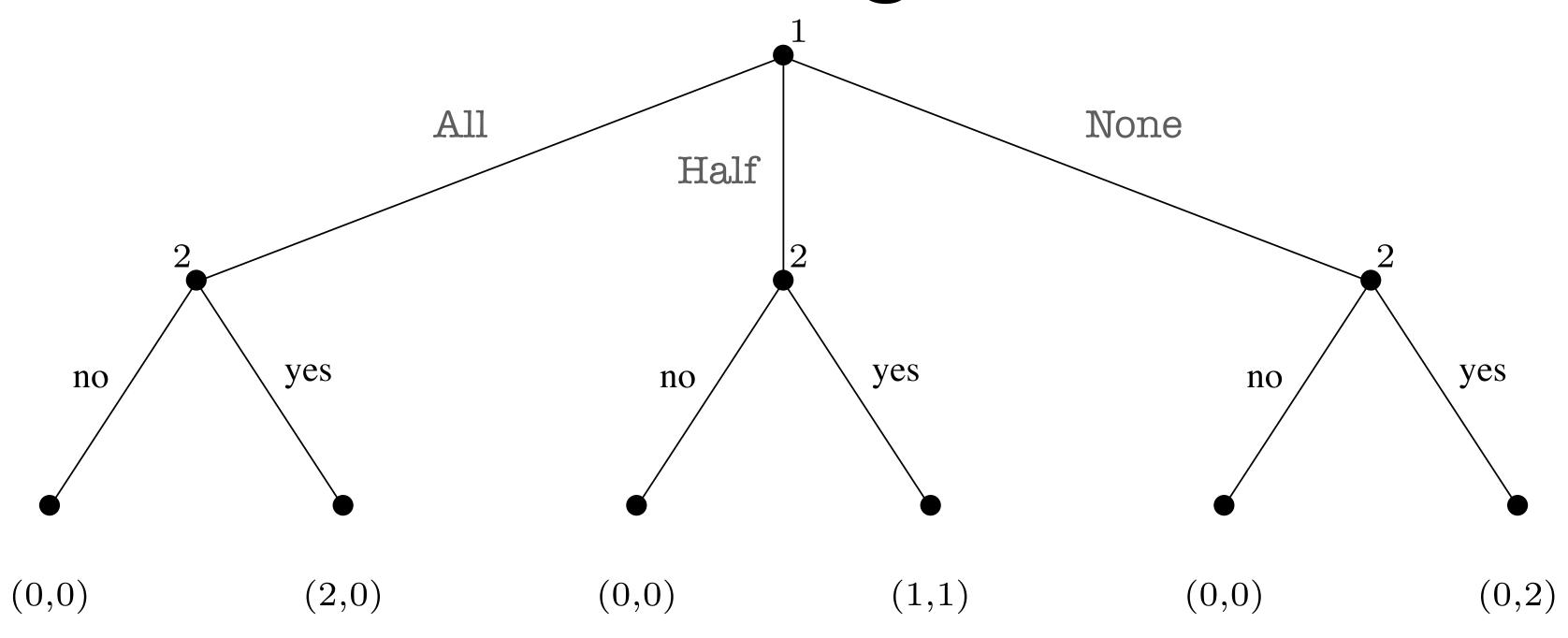
A finite perfect-information game in extensive form is a tuple

 $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players,
- A is a single set of actions,
- *H* is a set of nonterminal choice nodes,
- Z is a set of **terminal nodes** (disjoint from H),
- $\chi: H \to 2^A$ is the action function,
- $\rho: H \to N$ is the player function,
- $\sigma: H \times A \rightarrow H \cup Z$ is the successor function,
- $u = (u_1, u_2, ..., u_n)$ is a utility function for each player, $u_i : Z \to \mathbb{R}$



Fun Game: The Sharing Game



- Two siblings must decide how to share two \$100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
 - If rejected, nobody gets any coins.

Pure Strategies

Question: What are the pure strategies in an extensive form game?

Definition:

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in extensive form. Then the **pure strategies of player** i consist of the cross product of actions available to player i at each of their choice nodes, i.e.,

$$\prod_{h \in H \mid \rho(h) = i} \chi(h)$$

- A pure strategy associates an action with each choice node, even those that will never be reached
 - Even nodes that will never be reached as a result of the strategy itself!

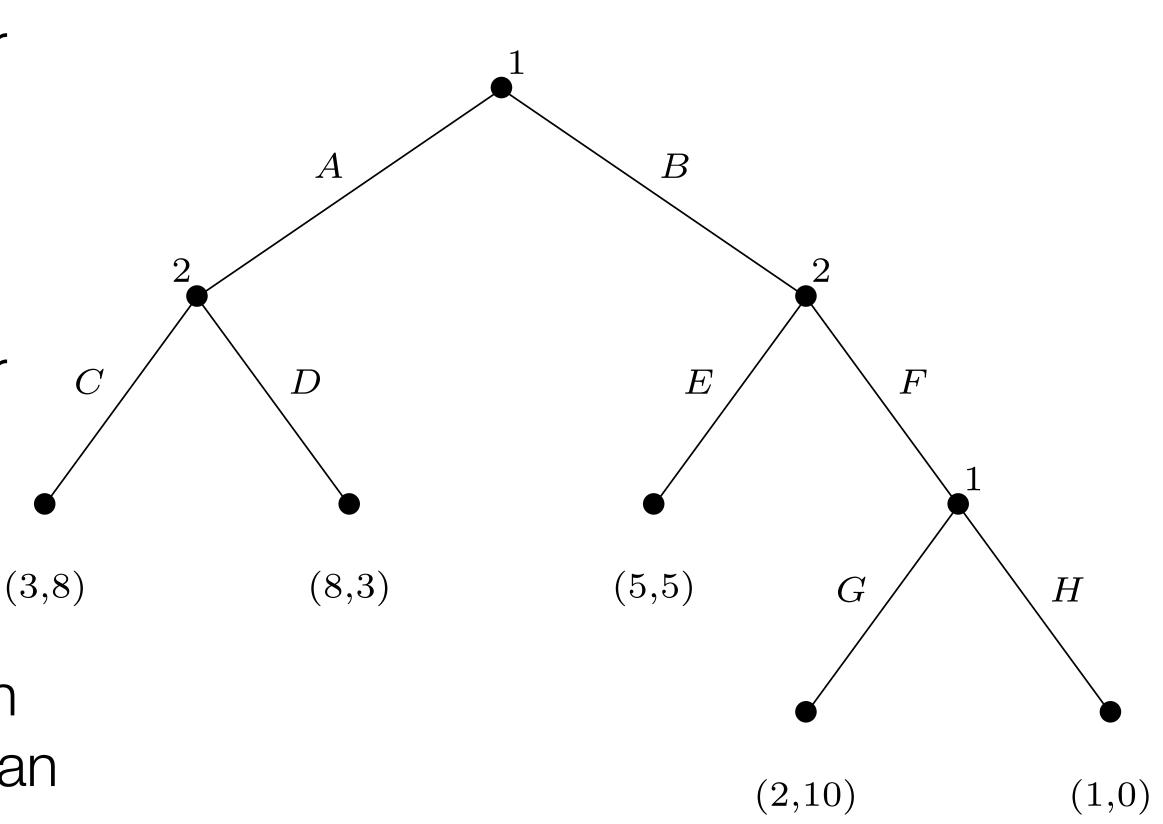
Pure Strategies Example

Question: What are the pure strategies for player 2?

• $\{(C, E), (C, F), (D, E), (D, F)\}$

Question: What are the pure strategies for player 1?

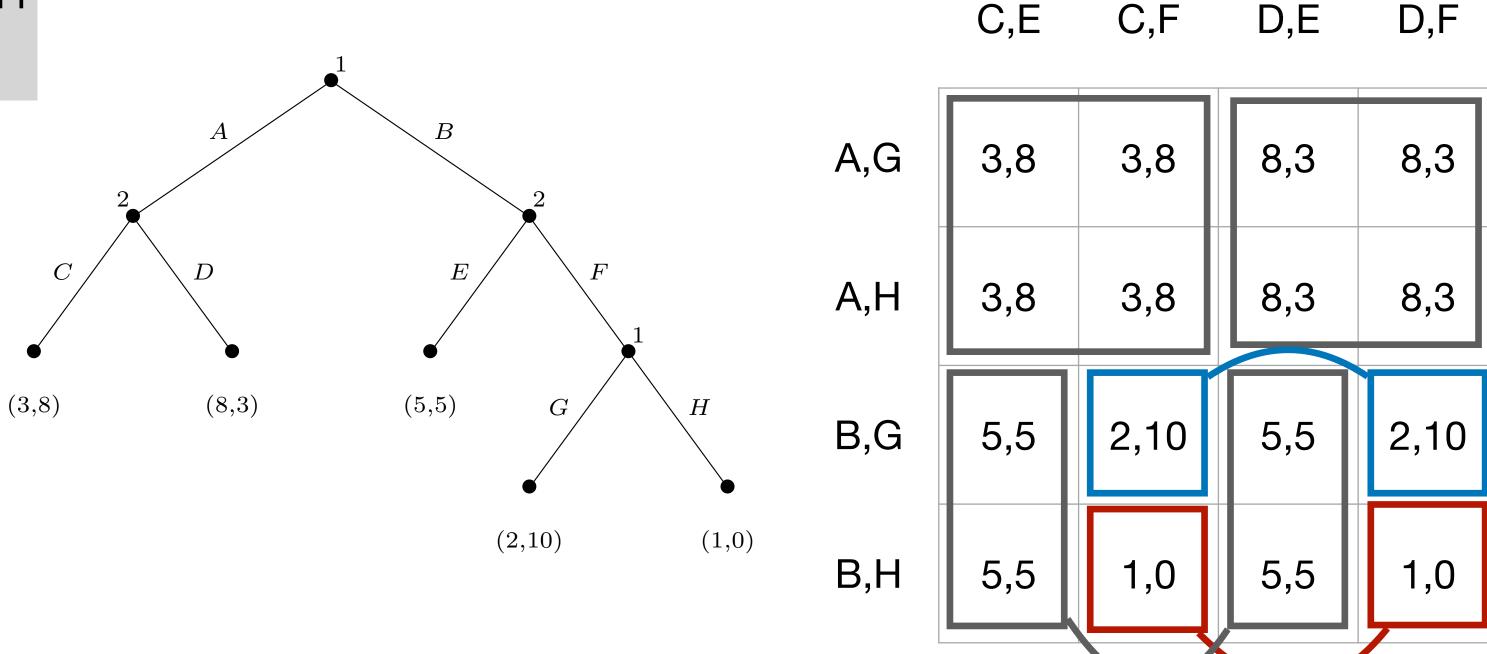
- $\{(A,G),(A,H),(B,G),(B,H)\}$
- Note that these associate an action with the second choice node even when it can never be reached



Induced Normal Form

Question:

Which representation is more **compact**?



- Any pair of pure strategies uniquely identifies a terminal node, which identifies a utility for each agent (why?)
- We have now defined a set of agents, pure strategies, and utility functions
- Any extensive form game defines a corresponding induced normal form game

Reusing Old Definitions

- We can plug our new definition of pure strategy into our existing definitions for:
 - Mixed strategy
 - Best response
 - Nash equilibrium (both pure and mixed strategy)

Question:

What is the definition of a mixed strategy in an extensive form game?

Pure Strategy Nash Equilibria

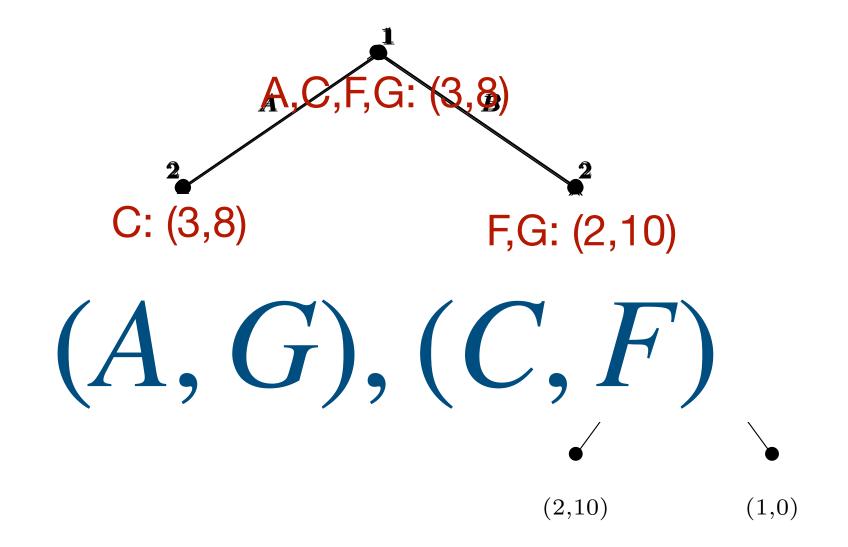
Theorem: [Zermelo, 1913]

Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.

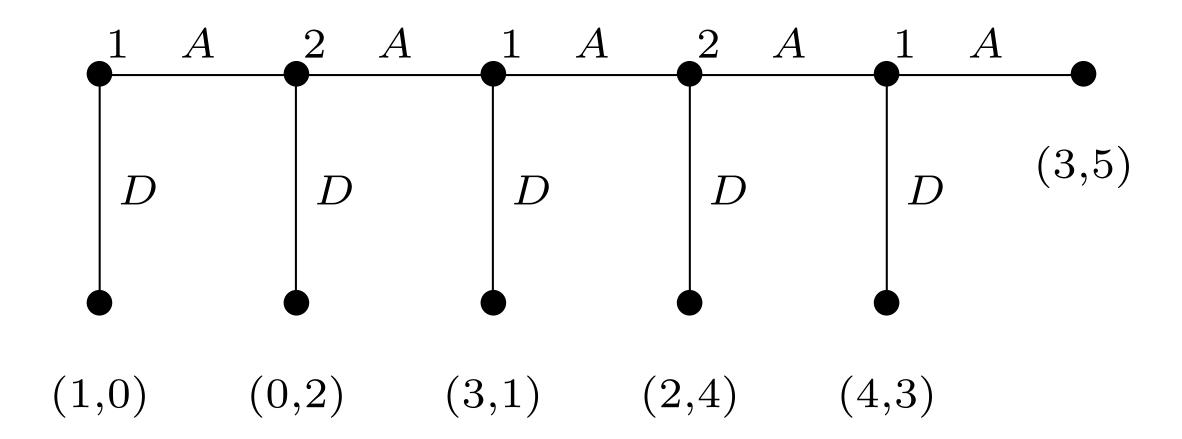
- Starting from the bottom of the tree, no agent needs to randomize, because they already know the best response
- There might be multiple pure strategy Nash equilibria in cases where an agent has multiple best responses at a single choice node

Backward Induction

- Backward induction is a straightforward algorithm that is guaranteed to compute a pure strategy Nash equilibrium.
- Idea: Replace subgames lower in the tree with their equilibrium values

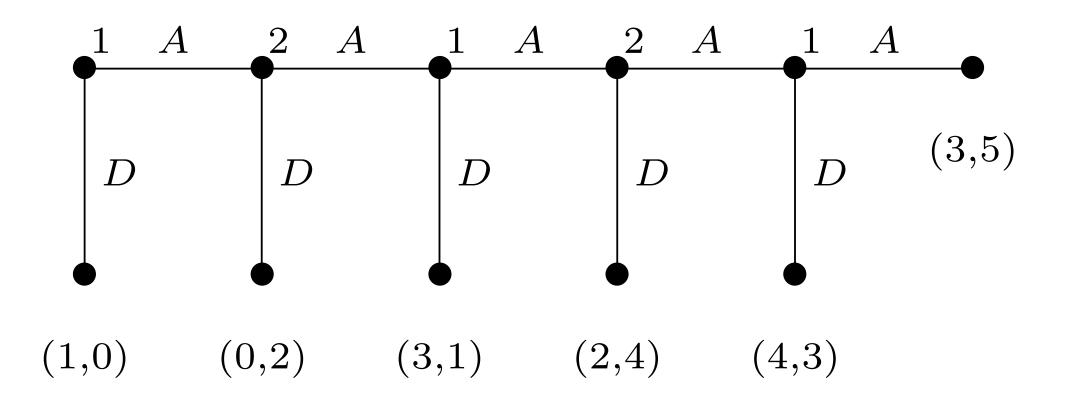


Fun Game: Centipede



- At each stage, one of the players can go Across or Down
- If they go Down, the game ends.

Backward Induction Criticism



- The unique equilibrium is for each player to play Down at the first opportunity.
- Empirically, this is not how real people tend to play!
- Theoretically, what should you do if you arrive at an off-path node?
 - How do you update your beliefs to account for this probability 0 event?
 - If player 1 knows that you will update your beliefs in a way that causes you
 not to play Down, then playing Down is no longer their only rational choice...

Imperfect Information, informally

- Perfect information games model sequential actions that are observed by all players
 - Randomness can be modelled by a special Nature player with constant utility and known mixed strategy
- But many games involve hidden actions
 - Cribbage, poker, Scrabble
 - Sometimes actions of the **players** are hidden, sometimes **Nature's** actions are hidden, sometimes both
- Imperfect information extensive form games are a model of games with sequential actions, some of which may be hidden

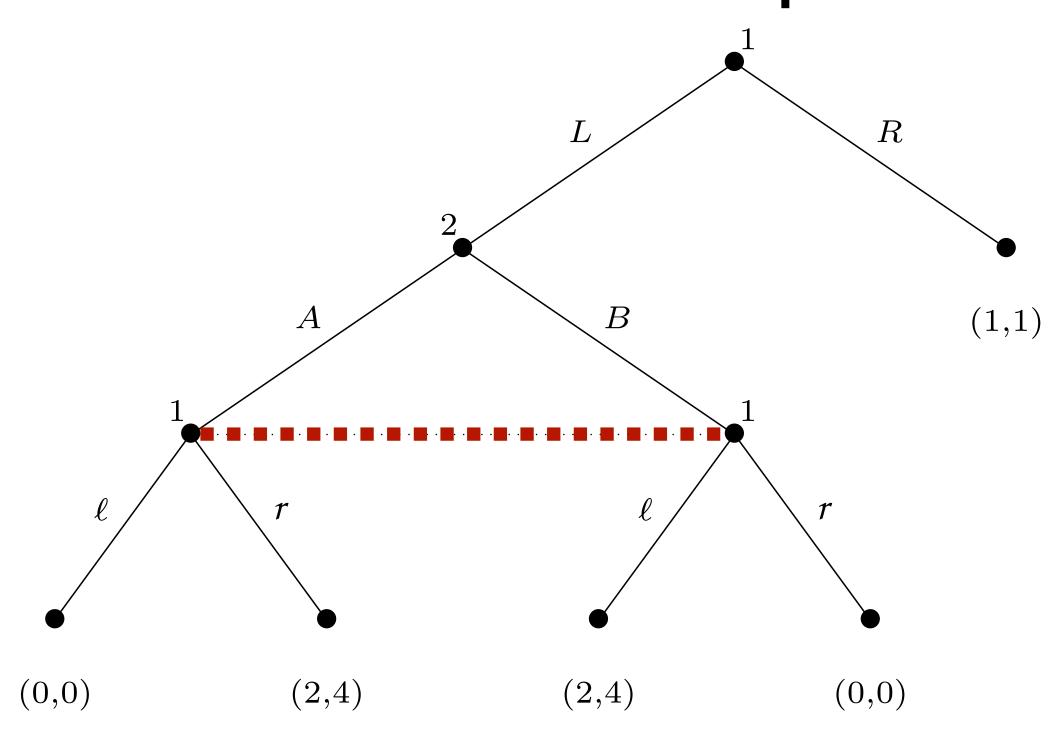
Imperfect Information Extensive Form Game

Definition:

An imperfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u, I)$, where

- $(N, A, H, Z, \chi, \rho, \sigma, u)$ is a perfect information extensive form game, and
- $I=(I_1,\ldots,I_n)$, where $I_i=(I_{i,1},\ldots,I_{i,k_i})$ is an **equivalence relation** on (i.e., partition of) $\{h\in H: \rho(h)=i\}$ with the property that $\chi(h)=\chi(h')$ and $\rho(h)=\rho(h')$ whenever there exists a $j\in N$ for which $h\in I_{i,j}$ and $h'\in I_{i,j}$.

Imperfect Information Extensive Form Example



- The members of the equivalence classes are also called information sets
- Players cannot distinguish which history they are in within an information set
- Question: What are the information sets for each player in this game?

Pure Strategies

Question: What are the pure strategies in an imperfect information extensive-form game?

Definition:

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u, I)$ be an imperfect information game in extensive form. Then the **pure strategies of player** i consist of the cross product of actions available to player i at each of their **information sets**, i.e.,

$$\prod_{I_{i,j}\in I_i} \chi(h)$$

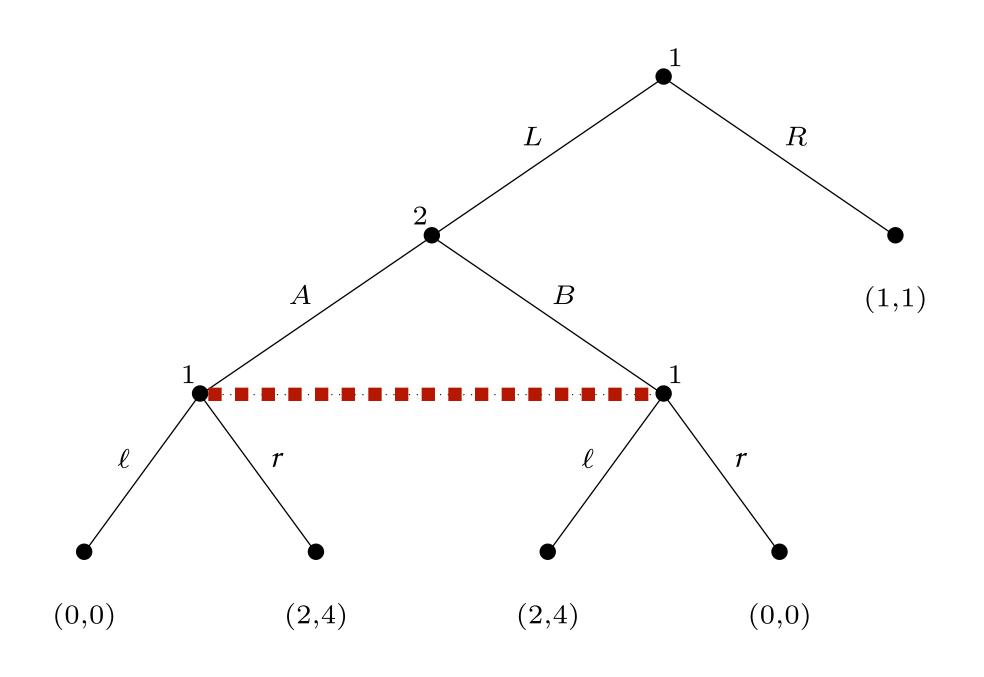
 A pure strategy associates an action with each information set, even those that will never be reached

Questions:

In an imperfect information game:

- What are the mixed strategies?
- 2. What is a best response?
- 3. What is a Nash equilibrium?

Induced Normal Form



	Α	В
L, ℓ	0,0	2,4
L,r	2,4	0,0
R,ℓ	1,1	1,1
R,r	1,1	1,1

Question:

Can you represent an arbitrary perfect information extensive form game as an imperfect information game?

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a utility for each agent
- We have now defined a set of agents, pure strategies, and utility functions
- Any extensive form game defines a corresponding induced normal form game

Summary

- Extensive form games model sequential actions
- Pure strategies for extensive form games map choice nodes to actions
 - Induced normal form: normal form game with these pure strategies
 - Notions of mixed strategy, best response, etc. translate directly
- Perfect information: Every agent sees all actions of the other players
 - Backward induction computes a pure strategy Nash equilibrium for any perfect information extensive form game
- Imperfect information: Some actions are hidden
 - Histories are partitioned into information sets; players cannot distinguish between histories in the same information set