
Policy Gradient

CMPUT 366: Intelligent Systems

S&B §13.0-13.3

Lecture Overview

1. Recap & Logistics

2. Parameterized Policies

3. Policy Gradient Theorem

4. REINFORCE Algorithm

Logistics

• Assignment 4 is due Monday April 19 at 11:59pm

• USRIs are now available for this course:

• You should have gotten an email

• Can also access at: https://p20.courseval.net/etw/ets/et.asp?
nxappid=UA2&nxmid=start

• Survey is available until Friday April 16 at 11:59pm

https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start

Recap:
Parameterized Value Functions

• A parameterized value function's values are set by setting the values of a
weight vector :

• could be a linear function: is the feature weights

• could be a neural network: is the weights, biases, kernels, etc.

• Many fewer weights than states:

• Changing one weight changes the estimated value of many states

• Updating a single state generalizes to affect many other states' values

w ∈ ℝd

̂v(s, w) ≈ vπ(s)

̂v w

̂v w

d ≪ |𝒮 |

Recap:
Stochastic Gradient Descent

• Stochastic Gradient Descent: After each example , adjust
weights a tiny bit in direction that would most reduce error on that
example:

• We don't know , so we update toward an approximate target :

(St, vπ(St))

wt+1 ≐ wt −
1
2

α∇[vπ(St) − ̂v(St, wt)]2

= wt + α [vπ(St) − ̂v(St, wt)]∇ ̂v(s, wt)

vπ(St) Ut

wt+1 ← wt + α [Ut− ̂v(St, wt)]∇ ̂v(s, wt)

target

error

Approaches to Control
1. Action-value methods (all previous approaches)

• Learn the value of each action in each state:

• Pick the max-value action (usually):

2. Function approximation (last lecture)

• Prediction: Learn the parameters of state-value function

• Control: Learn the parameters of action-value function

3. Policy-gradient methods (today)

• Learn the parameters of a policy
• Update by gradient ascent in performance

qπ(s, a)

arg max
a

qπ(s, a)

w ̂v(s, w)

w ̂q(s, w)

θ π(a ∣ s, θ)

Parameterized Policies
• The action probabilities of a parameterized policy are set by

setting the values of a parameter vector

• Common approach: softmax in action preferences

• Learn an action preference function

• Softmax over action preferences gives action probabilities:

π(a ∣ s, θ)
θ ∈ ℝd′

h(s, a, θ)

π(a |s, θ) ≐
eh(s,a,θ)

∑a′

eh(s,a′ ,θ)

Action Preferences
• Question: What functional forms can we use for action preferences?

• Anything we could have used for :

• Linear approximations:

• Including coarse coding, tile coding

• Neural network: 𝜃 are weights, offsets, kernels, etc.

̂v

h(s, a, θ) ≐ θTx(s) =
d

∑
i=1

θixi(s)

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features.

Parameterized Policies Advantage:
Deterministic Action

• The optimal policy is typically deterministic

• If we run an -soft policy, we cannot get to an optimal policy

• Every action is played either with probability or

• Softmax in action preference policies can learn arbitrary probabilities, because is
completely unconstrained:

• Question: How can a softmax in action preferences policy converge to a deterministic policy?

• Question: Can you get the same results with ? (why?)

π*(a ∣ s) = arg max
a

q*(s, a)

ϵ

ϵ (1 − ϵ)

h(s, a, θ)

π(a |s, θ) ≐
eh(s,a,θ)

∑a′
eh(s,a′ ,θ)

h(s, a, θ) = ̂q(s, a, θ)

Example:
Switcheroo Corridor

• Actions left and right have usual effect

• Except in one state they are reversed!

• Function approximation makes all the
states look identical

• Optimal policy is stochastic, with

• But -greedy policies can only pick
 of or !

Pr(right) ≈ 0.59

ϵ
Pr(right) ϵ (1 − ϵ)

13.1. Policy Approximation and its Advantages 323

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) = [0, 1]>,
for all s. An action-value method with "-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 � "/2 on all steps
or choosing left with the same high probability on all time steps. If " = 0.1, then
these two policies achieve a value (at the start state) of less than �44 and �82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left

�-greedy right

optimal
stochastic

policy

J(✓) = v⇡✓ (S)

GS

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

(Image: Sutton & Barto, 2018)

Parameterized Policies Advantage:
Stochastic Actions

• Optimal policies are deterministic, but only when there is no state aggregation

• When function approximation makes states look the same, or when states are
imperfectly observable, the optimal policy might be an arbitrary probability
distribution

• Parameterized policies can represent arbitrary distributions

• Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance
• We choose the policy parameters in order to maximize the performance

of the policy:

• Question: What should be in episodic cases?

• Expected returns to the policy specified by 𝜃:

• With special single starting state :

θ
J(θ)

J(θ)

J(θ) ≐ 𝔼πθ [G0]
s0

J(θ) ≐ vπθ
(s0)

Policy Gradient Ascent

1. Want to maximize performance:

2. Gradient gives direction that J increases:

3. Update parameters in direction of the gradient:

J(θ) = vπθ
(s0)

∇J(θ)

θt+1 ← θt + α∇J(θt)

= θt + α∇vπθ
(St)

Oops!

Policy Gradient Theorem

• The gradient of the policy is just the gradient of the value function
with respect to the policy

• But we don't know the gradient of the value function!

Policy Gradient Theorem:

∇J(θ)
vπθ

(s0)

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

on-policy
stationary

 distribution

true
action values

gradient of
policy

Monte Carlo Policy Gradient

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

= 𝔼π [∑
a

qπ(St, a)∇π(a |St, θ)]
= 𝔼π [∑

a

qπ(St, a)∇π(a |St, θ)
π(a |St, θ)
π(a |St, θ)]

= 𝔼π [∑
a

π(a |St, θ)qπ(St, a)
∇π(a |St, θ)
π(a |St, θ)]

= 𝔼π [qπ(St, At)
∇π(At |St, θ)
π(At |St, θ)]

= 𝔼π [Gt
∇π(At |St, θ)
π(At |St, θ)]

Monte Carlo Policy Gradient
Algorithm: REINFORCE

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

∇π(At |St, θ)
π(At |St, θ)

⏟
"eligibility function"

REINFORCE Update: θt+1 ← θt + αGt
∇π(At |St, θt)
π(At |St, θt)

(∇ln x =
∇x
x)

REINFORCE Performance
in Switcheroo Corridor

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

(Image: Sutton & Barto, 2018)

Summary
• All our previous control algorithms were action-value methods

1. Approximate the action-value

2. Choose maximal-value action at every state

• Policy gradient methods:

1. Represent policies using parametric policy

2. Directly optimize performance by adjusting

• Policy Gradient Theorem lets us restate in terms of quantities that
we know () or can approximate ()

• REINFORCE uses a particular estimation scheme for policy gradients

q*(s, a)

π(s ∣ a, θ)
J(θ) θ

J(θ)
∇π qπ

