Function Approximation

CMPUT 366: Intelligent Systems

S&B §9.0-9.5.4

Lecture Outline

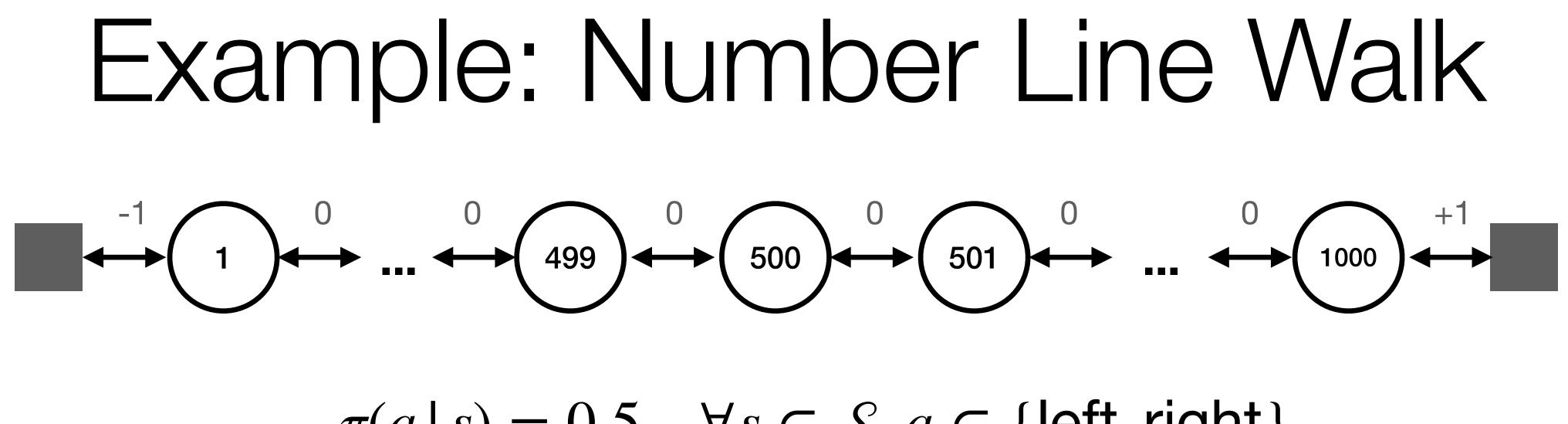
- 1. Recap
- 2. Parameterized Value Functions
- 3. Gradient Descent
- 4. Approximation Schemes

Recap: TD Learning

- Temporal Difference Learning bootstraps and learns from experience
 - Dynamic programming bootstraps, but doesn't learn from experience (requires full dynamics)
 - Monte Carlo learns from experience, but doesn't bootstrap
- Prediction: **TD(0) algorithm**
- Sarsa estimates action-values of actual
 e-greedy policy
- Q-Learning estimates action-values of optimal policy while executing an *e*-greedy policy

Tabular Value Functions

- We have been assuming a **tabular representation** for value function estimates V(s) and Q(s, a)
 - We can **separately** set the value of V(s) or Q(s, a) for every possible $s \in \mathcal{S}$ and $a \in \mathcal{A}$
- This implicitly means that we **must** store a separate value for every possible input for the value function
- Question: What should we do if there are too many states to store a value for each? (e.g., pixel values in the Atari setting)
- Question: What should we do if the state isn't fully observable?



- \bullet estimate v_{π} ?
- **Question:** How much storage would that require? \bullet
- **Question:** What could we do instead?

$\pi(a \mid s) = 0.5 \quad \forall s \in \mathcal{S}, a \in \{\text{left}, \text{right}\}$

Question: Would dynamic programming, Monte Carlo, or TD(0) work to

Parameterized Value Functions

• A parameterized value function's values are set by setting the values of a weight vector $\mathbf{w} \in \mathbb{R}^d$:

- \hat{v} could be a linear function: w is the feature weights
- \hat{v} could be a **neural network**: w is the weights, biases, kernels, etc.
- Many fewer weights than states: $d \ll |\mathcal{S}|$
 - Changing one weight changes the estimated value of many states
 - Updating a single state generalizes to affect many other states' values

 $\hat{v}(s, \mathbf{W}) \approx v_{\pi}(s)$

Decoupled Estimates

- With **tabular** estimates: lacksquare
 - Can update the value of a single state **individually**
 - Estimates can be exactly correct for each state
- For **parameterized** estimates:
 - states have identical features but different values)
 - Cannot independently adjust state values \bullet

• Estimates cannot necessarily be correct for each state (e.g., when two

Prediction Objective

- Since we cannot guarantee that every state will be correct, we must trade off estimation quality of one state vs. another
- We will use a distribution $\mu(s)$ to specify how much we care about the quality of our value estimate for each state
- We will optimize the **mean squared value error**:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \bullet loss of VE
- Question: What should we use for $\mu(s)$?

Note: If we knew v_{π} , this would be a supervised learning problem with a

Stochastic Gradient Descent with Known True Values

- Suppose we are given a **new example**: $(S_t, v_{\pi}(S_t))$
- How should we update our weight vector **W**?
- Stochastic Gradient Descent: After each example, adjust weights a tiny bit in direction that would most reduce error on that example:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[(v_{\pi}(S_t))^2 - 2v_{\pi}(S_t) \hat{v}(S_t, \mathbf{w}_t) + (\hat{v}(S_t, \mathbf{w}_t))^2 \right]$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(s, \mathbf{w}_t)$$

Stochastic Gradient Descent with Unknown True Values

- If we knew $v_{\pi}(s)$, we would be done!
- Instead, we will update toward an approximate target U_t : \bullet

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(s, \mathbf{w}_t)$$

• U_t can be any of our update targets from previous lectures

Gradient Monte Carlo

- Monte Carlo target: $U_t = G_t$
- U_t is an **unbiased** estimate of $v_{\pi}(S_t)$: $\mathbb{E}[U_t | S_t = s] = v_{\pi}(s)$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated Input: a differentiable function $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$ Algorithm parameter: step size $\alpha > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π Loop for each step of episode, t = 0, 1, ..., T - 1: $\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$

- **TD(0)** target: $U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$
- \bullet are not unbiased
- But updates to w change both the estimate and the target \bullet
- We call these updates **semi-gradient** updates

Semi-gradient

Bootstrapping targets like TD(0) depend on the current value of W_t , so they

• Gradient $\nabla \hat{v}(s, \mathbf{W}_t)$ accounts for change in the estimate from change in \mathbf{W}_t

Semi-gradient TD(0)

• **TD(0)** target: $U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$

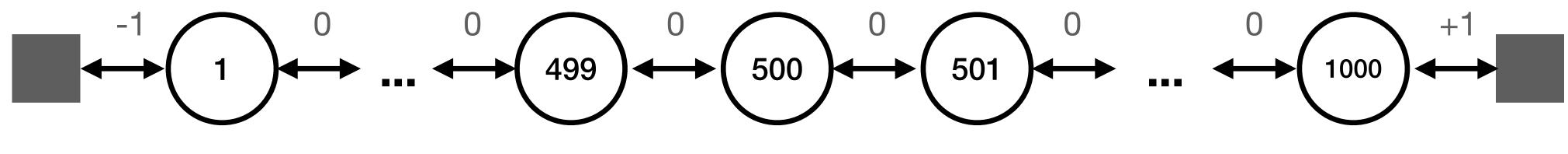
Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode: Initialize SLoop for each step of episode: Choose $A \sim \pi(\cdot | S)$ Take action A, observe R, S' $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$ $S \leftarrow S'$ until S is terminal

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

State Aggregation



- One easy way to reduce the memory usage for a large state space is to aggregate • states together
- w is a 10-element vector

•
$$\hat{v}(s, \mathbf{w}) = \mathbf{w}_{x(s)}$$
, where $x(s) = \left| \frac{s}{100} \right|$

$\pi(a \mid s) = 0.5 \quad \forall s \in \mathcal{S}, a \in \{\text{left}, \text{right}\}$

• In the Number Line Walk example, we could group the states into 10 groups of 100 states each

State Aggregation Performance

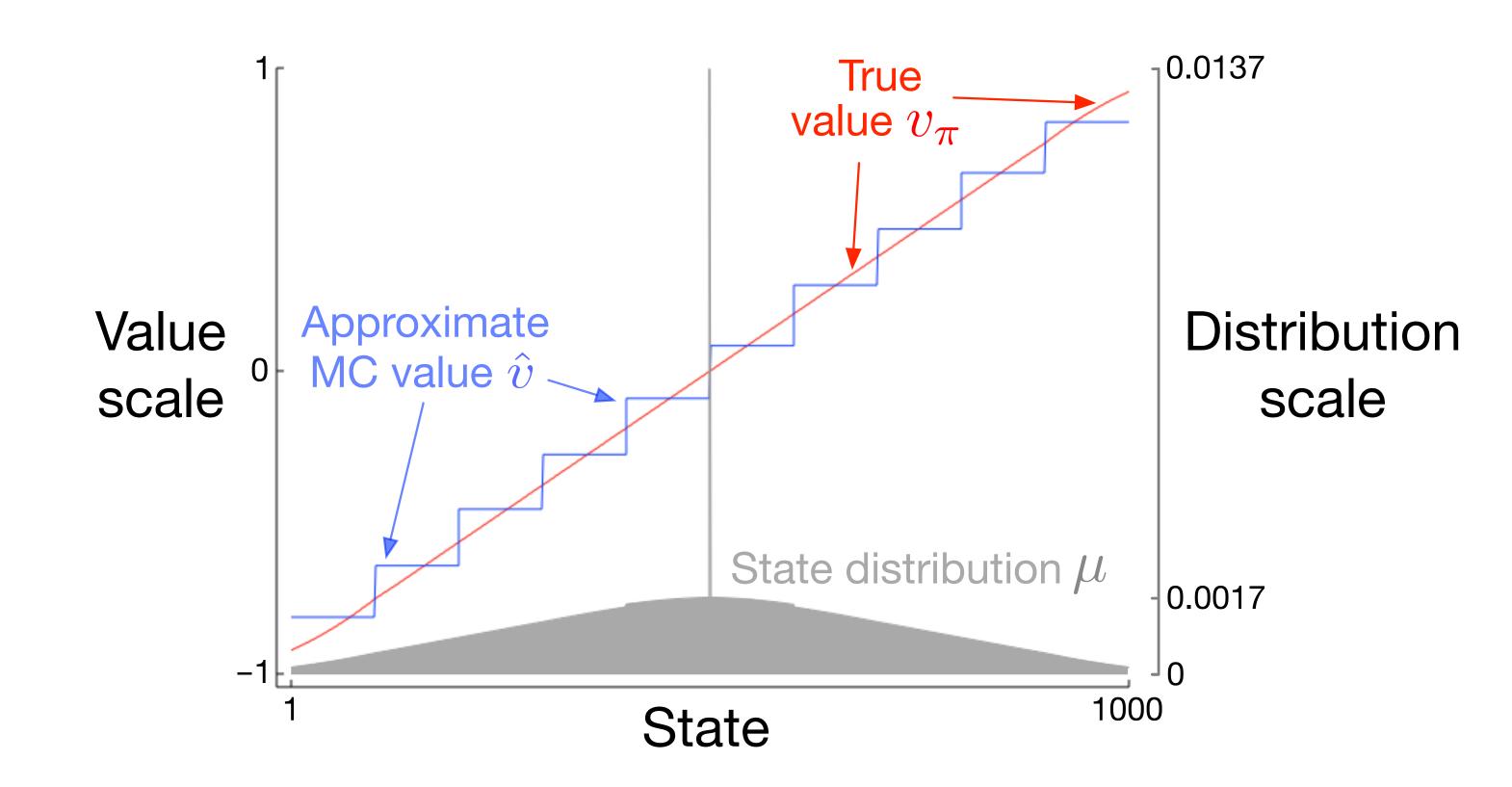


Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task, using the gradient Monte Carlo algorithm (page 202).

Linear Approximation

- Every state $s \in \mathcal{S}$ is assigned a feature vector $\mathbf{x}(s)$
- State-value function approximation:
 - $\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T$
- **Gradient** is easy:
- Gradient updates are easy: $\mathbf{W}_{t+1} \leftarrow$
- State aggregation is a **special case** of linear approximation (**why?**)

 $\mathbf{x}(s) \doteq (x_1(s), x_2(s), \dots, x_d(s))$

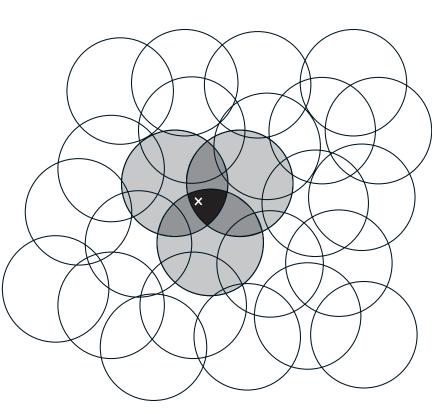
$$T\mathbf{x}(s) = \sum_{i=1}^{d} w_i x_i(s)$$

 $\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$

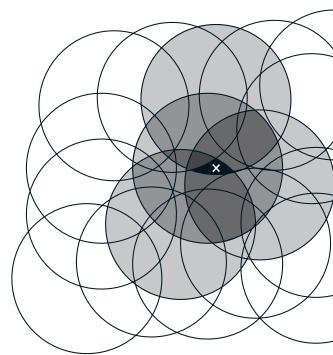
$$\mathbf{w}_t + \alpha \left[U_t - \hat{v}(s, \mathbf{w}_t) \right] \mathbf{x}(s)$$

Feature Construction: Coarse Coding

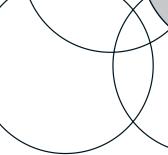
- Divide state space up into **overlapping cells**
- One indicator feature for each cell, set to 1 if the state is in the cell
- This is another form of state aggregation
- Updating one state generalizes to other states that share a cell



Narrow generalization

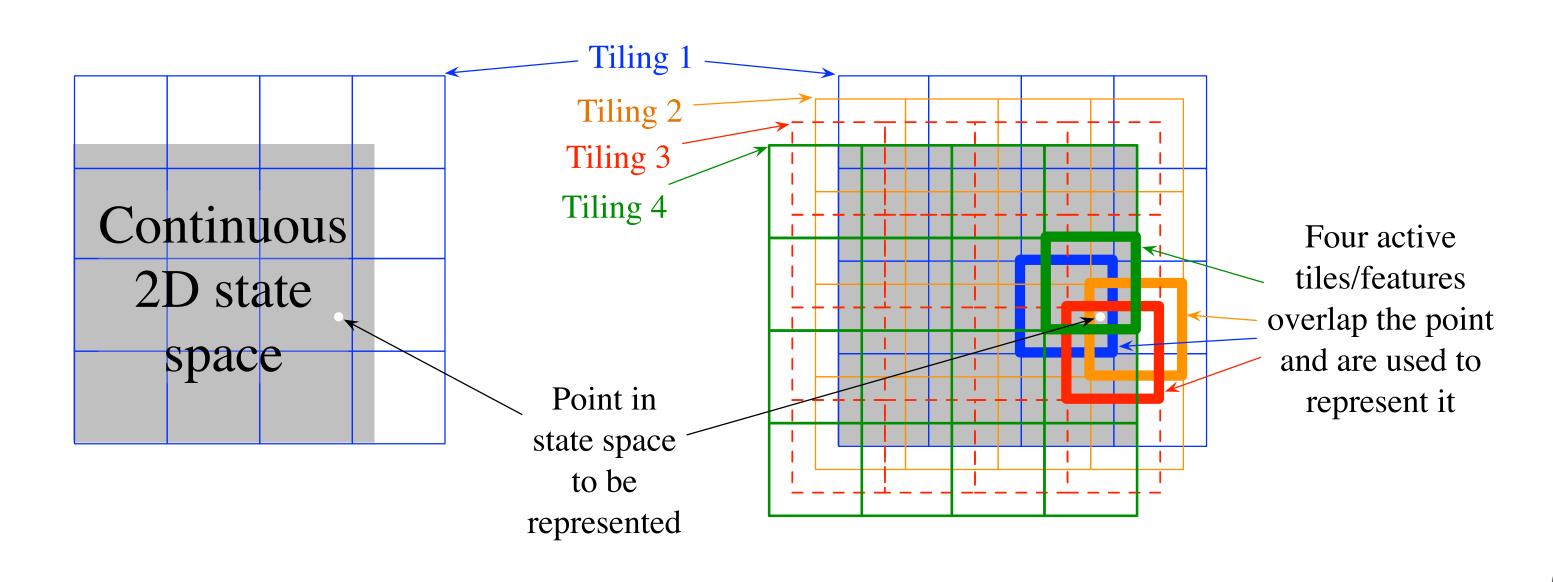


Broad generalization



Tile Coding

- The most practical form of coarse coding
- Partition state space into a uniform grid called a tiling
 - Use **multiple** tilings that are **offset**



Summary

- and/or action
- the values of states
- \bullet
- Most efficient forms of approximation: Linear approximations, especially coarse coding and tile coding

• It is often impractical to track the estimated value for every possible state

• Parameterized value function $\hat{v}(s, \mathbf{w})$ uses weights $\mathbf{w} \in \mathbb{R}^d$ to specify

Weights can be set using gradient descent and semi-gradient descent