
Function Approximation

CMPUT 366: Intelligent Systems

S&B §9.0-9.5.4

Lecture Outline

1. Recap

2. Parameterized Value Functions

3. Gradient Descent

4. Approximation Schemes

Recap: TD Learning
• Temporal Difference Learning bootstraps and learns from experience

• Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

• Monte Carlo learns from experience, but doesn't bootstrap

• Prediction: TD(0) algorithm

• Sarsa estimates action-values of actual -greedy policy

• Q-Learning estimates action-values of optimal policy while executing an
-greedy policy

ϵ

ϵ

Tabular Value Functions
• We have been assuming a tabular representation for value function

estimates and

• We can separately set the value of or for every possible
 and

• This implicitly means that we must store a separate value for every possible
input for the value function

• Question: What should we do if there are too many states to store a value
for each? (e.g., pixel values in the Atari setting)

• Question: What should we do if the state isn't fully observable?

V(s) Q(s, a)

V(s) Q(s, a)
s ∈ 𝒮 a ∈ 𝒜

Example: Number Line Walk

• Question: Would dynamic programming, Monte Carlo, or TD(0) work to
estimate ?

• Question: How much storage would that require?

• Question: What could we do instead?

vπ

500 10005011 499
0 0 0 0 0 0 +1-1

π(a |s) = 0.5 ∀s ∈ 𝒮, a ∈ {left, right}

(Image: Sutton & Barto, 2018)

Parameterized Value Functions
• A parameterized value function's values are set by setting the values of a

weight vector :

• could be a linear function: is the feature weights

• could be a neural network: is the weights, biases, kernels, etc.

• Many fewer weights than states:

• Changing one weight changes the estimated value of many states

• Updating a single state generalizes to affect many other states' values

w ∈ ℝd

̂v(s, w) ≈ vπ(s)

̂v w

̂v w

d ≪ |𝒮 |

Decoupled Estimates

• With tabular estimates:

• Can update the value of a single state individually

• Estimates can be exactly correct for each state

• For parameterized estimates:

• Estimates cannot necessarily be correct for each state (e.g., when two
states have identical features but different values)

• Cannot independently adjust state values

Prediction Objective
• Since we cannot guarantee that every state will be correct, we must

trade off estimation quality of one state vs. another

• We will use a distribution to specify how much we care about the
quality of our value estimate for each state

• We will optimize the mean squared value error:

• Note: If we knew , this would be a supervised learning problem with a
loss of

• Question: What should we use for ?

μ(s)

VE(w) ≐ ∑
s∈𝒮

μ(s)[vπ(s) − ̂v(s, w)]2

vπ
VE

μ(s)

Stochastic Gradient Descent with
Known True Values

• Suppose we are given a new example:

• How should we update our weight vector ?

• Stochastic Gradient Descent: After each example, adjust weights a tiny bit in
direction that would most reduce error on that example:

(St, vπ(St))
w

wt+1 ≐ wt −
1
2

α∇[vπ(St) − ̂v(St, wt)]2

= wt −
1
2

α∇[(vπ(St))2 − 2vπ(St) ̂v(St, wt) + (̂v(St, wt))2]
= wt + α [vπ(St) − ̂v(St, wt)]∇ ̂v(s, wt)

target

Stochastic Gradient Descent with
Unknown True Values

• If we knew , we would be done!

• Instead, we will update toward an approximate target :

• can be any of our update targets from previous lectures

vπ(s)

Ut

wt+1 ← wt + α [Ut − ̂v(St, wt)]∇ ̂v(s, wt)

Ut

Gradient Monte Carlo
• Monte Carlo target:

• is an unbiased estimate of :

Ut = Gt

Ut vπ(St) 𝔼[Ut |St = s] = vπ(s)

202 Chapter 9: On-policy Prediction with Approximation

these cases we cannot perform the exact update (9.5) because v⇡(St) is unknown, but
we can approximate it by substituting Ut in place of v⇡(St). This yields the following
general SGD method for state-value prediction:

wt+1

.
= wt + ↵

h
Ut � v̂(St,wt)

i
rv̂(St,wt). (9.7)

If Ut is an unbiased estimate, that is, if E[Ut|St =s] = v⇡(St), for each t, then wt is
guaranteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by interaction
(or simulated interaction) with the environment using policy ⇡. Because the true value of
a state is the expected value of the return following it, the Monte Carlo target Ut

.
= Gt is

by definition an unbiased estimate of v⇡(St). With this choice, the general SGD method
(9.7) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-descent
version of Monte Carlo state-value prediction is guaranteed to find a locally optimal
solution. Pseudocode for a complete algorithm is shown in the box below.

Gradient Monte Carlo Algorithm for Estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rd ! R
Algorithm parameter: step size ↵ > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
Loop for each step of episode, t = 0, 1, . . . , T � 1:

w w + ↵
⇥
Gt � v̂(St,w)

⇤
rv̂(St,w)

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St) is used
as the target Ut in (9.7). Bootstrapping targets such as n-step returns Gt:t+n or the DP
target

P
a,s0,r ⇡(a|St)p(s0, r |St, a)[r + �v̂(s0,wt)] all depend on the current value of the

weight vector wt, which implies that they will be biased and that they will not produce a
true gradient-descent method. One way to look at this is that the key step from (9.4)
to (9.5) relies on the target being independent of wt. This step would not be valid if
a bootstrapping estimate were used in place of v⇡(St). Bootstrapping methods are not
in fact instances of true gradient descent (Barnard, 1993). They take into account the
e↵ect of changing the weight vector wt on the estimate, but ignore its e↵ect on the target.
They include only a part of the gradient and, accordingly, we call them semi-gradient
methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear case
discussed in the next section. Moreover, they o↵er important advantages that make them
often clearly preferred. One reason for this is that they typically enable significantly faster
learning, as we have seen in Chapters 6 and 7. Another is that they enable learning to

Semi-gradient

• TD(0) target:

• Bootstrapping targets like TD(0) depend on the current value of , so they
are not unbiased

• Gradient accounts for change in the estimate from change in

• But updates to change both the estimate and the target

• We call these updates semi-gradient updates

Ut = Rt+1 + γ ̂v(St+1, wt)

wt

∇ ̂v(s, wt) wt

w

Semi-gradient TD(0)
• TD(0) target: Ut = Rt+1 + γ ̂v(St+1, wt)

9.3. Stochastic-gradient and Semi-gradient Methods 203

be continual and online, without waiting for the end of an episode. This enables them to
be used on continuing problems and provides computational advantages. A prototypical
semi-gradient method is semi-gradient TD(0), which uses Ut

.
= Rt+1 + �v̂(St+1,w) as its

target. Complete pseudocode for this method is given in the box below.

Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S

+ ⇥ Rd ! R such that v̂(terminal,·) = 0
Algorithm parameter: step size ↵ > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

w w + ↵
⇥
R + �v̂(S0,w)� v̂(S,w)

⇤
rv̂(S,w)

S S0

until S is terminal

State aggregation is a simple form of generalizing function approximation in which
states are grouped together, with one estimated value (one component of the weight
vector w) for each group. The value of a state is estimated as its group’s component,
and when the state is updated, that component alone is updated. State aggregation
is a special case of SGD (9.7) in which the gradient, rv̂(St,wt), is 1 for St’s group’s
component and 0 for the other components.

Example 9.1: State Aggregation on the 1000-state Random Walk Consider a
1000-state version of the random walk task (Examples 6.2 and 7.1 on pages 125 and
144). The states are numbered from 1 to 1000, left to right, and all episodes begin near
the center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all with
equal probability. Of course, if the current state is near an edge, then there may be fewer
than 100 neighbors on that side of it. In this case, all the probability that would have
gone into those missing neighbors goes into the probability of terminating on that side
(thus, state 1 has a 0.5 chance of terminating on the left, and state 950 has a 0.25 chance
of terminating on the right). As usual, termination on the left produces a reward of
�1, and termination on the right produces a reward of +1. All other transitions have a
reward of zero. We use this task as a running example throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight line,
but curving slightly toward the horizontal for the last 100 states at each end. Also shown
is the final approximate value function learned by the gradient Monte-Carlo algorithm
with state aggregation after 100,000 episodes with a step size of ↵ = 2⇥ 10�5. For the
state aggregation, the 1000 states were partitioned into 10 groups of 100 states each (i.e.,
states 1–100 were one group, states 101–200 were another, and so on). The staircase e↵ect

State Aggregation

• One easy way to reduce the memory usage for a large state space is to aggregate
states together

• In the Number Line Walk example, we could group the states into 10 groups of 100 states each

• is a 10-element vector

• , where

w

̂v(s, w) = wx(s) x(s) = ⌊ s
100 ⌋

500 10005011 499
0 0 0 0 0 0 +1-1

π(a |s) = 0.5 ∀s ∈ 𝒮, a ∈ {left, right}

(Image: Sutton & Barto, 2018)

State Aggregation Performance
204 Chapter 9: On-policy Prediction with Approximation

0

State

Value
scale

 True
value v⇡

 Approximate
MC value v̂

 State distribution
0.0017

0.0137

Distribution
scale

10001

0

-1

1

µ

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

shown in the figure is typical of state aggregation; within each group, the approximate
value is constant, and it changes abruptly from one group to the next. These approximate
values are close to the global minimum of the VE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution µ for this task, shown in the lower portion of the figure with a
right-side scale. State 500, in the center, is the first state of every episode, but is rarely
visited again. On average, about 1.37% of the time steps are spent in the start state.
The states reachable in one step from the start state are the second most visited, with
about 0.17% of the time steps being spent in each of them. From there µ falls o↵ almost
linearly, reaching about 0.0147% at the extreme states 1 and 1000. The most visible
e↵ect of the distribution is on the leftmost groups, whose values are clearly shifted higher
than the unweighted average of the true values of states within the group, and on the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by µ. For example, in the
leftmost group, state 100 is weighted more than 3 times more strongly than state 1. Thus
the estimate for the group is biased toward the true value of state 100, which is higher
than the true value of state 1.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which the
approximate function, v̂(·,w), is a linear function of the weight vector, w. Corresponding
to every state s, there is a real-valued vector x(s)

.
= (x1(s), x2(s), . . . , xd(s))>, with the

same number of components as w. Linear methods approximate state-value function by

(Image: Sutton & Barto, 2018)

Linear Approximation
• Every state is assigned a feature vector

• State-value function approximation:

• Gradient is easy:

• Gradient updates are easy:

• State aggregation is a special case of linear approximation (why?)

s ∈ 𝒮 x(s)

x(s) ≐ (x1(s), x2(s), …, xd(s))

̂v(s, w) ≐ wTx(s) =
d

∑
i=1

wixi(s)

∇ ̂v(s, w) = x(s)

wt+1 ← wt + α [Ut − ̂v(s, wt)] x(s)

Feature Construction:
Coarse Coding

• Divide state space up into overlapping cells

• One indicator feature for each cell, set to 1 if
the state is in the cell

• This is another form of state aggregation

• Updating one state generalizes to other states
that share a cell

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features.

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features. (Image: Sutton & Barto, 2018)

Tile Coding
• The most practical form of coarse coding

• Partition state space into a uniform grid called a tiling

• Use multiple tilings that are offset

9.5. Feature Construction for Linear Methods 217

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that is
flexible and computationally e�cient. It may be the most practical feature representation
for modern sequential digital computers.

In tile coding the receptive fields of the features are grouped into partitions of the state
space. Each such partition is called a tiling, and each element of the partition is called a
tile. For example, the simplest tiling of a two-dimensional state space is a uniform grid
such as that shown on the left side of Figure 9.9. The tiles or receptive field here are
squares rather than the circles in Figure 9.6. If just this single tiling were used, then the
state indicated by the white spot would be represented by the single feature whose tile
it falls within; generalization would be complete to all states within the same tile and
nonexistent to states outside it. With just one tiling, we would not have coarse coding
but just a case of state aggregation.

Point in
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous

2D state
space

Four active
tiles/features

overlap the point
and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are o↵set from one another by a uniform amount in each dimension.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with tile coding,
multiple tilings are used, each o↵set by a fraction of a tile width. A simple case with
four tilings is shown on the right side of Figure 9.9. Every state, such as that indicated
by the white spot, falls in exactly one tile in each of the four tilings. These four tiles
correspond to four features that become active when the state occurs. Specifically, the
feature vector x(s) has one component for each tile in each tiling. In this example there
are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will be 0 except for the four corresponding to
the tiles that s falls within. Figure 9.10 shows the advantage of multiple o↵set tilings
(coarse coding) over a single tiling on the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with partitions,
the overall number of features that are active at one time is the same for any state.
Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings. This allows the step-size parameter, ↵, to
be set in an easy, intuitive way. For example, choosing ↵ = 1

n
, where n is the number

(Image: Sutton & Barto, 2018)

Summary

• It is often impractical to track the estimated value for every possible state
and/or action

• Parameterized value function uses weights to specify
the values of states

• Weights can be set using gradient descent and semi-gradient descent

• Most efficient forms of approximation:
Linear approximations, especially coarse coding and tile coding

̂v(s, w) w ∈ ℝd

