lemporal Difference Learning

CMPUT 366: Intelligent Systems



| ecture Overview

1. Recap

2. 1D Prediction
3. On-Policy TD Control (Sarsa)
4. Off-Policy TD Control (Q-Learning)




Recap: Monte Carlo RL

 Monte Carlo estimation: Estimate expected returns to a state or action by
averaging actual returns over sampled trajectories

e Estimating action values requires either exploring starts or a
soft policy (e.q., €-greedy)

 Off-policy learning is the estimation of value functions for a target policy
based on episodes generated by a different behaviour policy

 Off-policy control is learning the optimal policy (target policy) using
episodes from a behaviour policy



Recap: Off-Policy Monte Carlo Prediction

Off-policy MC prediction (policy evaluation) for estimating () ~ ¢,

Input: an arbitrary target policy

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) + 0

Loop forever (for each episode):

b < any policy with coverage of m

Generate an episode following b: Sg, Ao, R1,...,57_1,Ar_1, R

G+ 0

W 1

Loop for each step of episode, t =1—1,17—2,...,0, while W # 0:
G vG + Riyq
C(S;, Ay) < C(Ss, Ay) + W
Q(St, Ar) < Q(S, Ay) C(S‘ZAt) G — Q(S5t, Ay))

m(A¢|St)
W= W




Recap: Off-Policy Monte Carlo Control

Off-policy MC control, for estimating m ~ .,

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) < 0
m(s) + argmax, QQ(s,a) (with ties broken consistently)

Loop forever (for each episode):
b <+ any soft policy
(Generate an episode using b: So, Ag, R1,...,57_1,Ar_1, Rt
G <+ 0
W 1
Loop for each step of episode, t =T—-1,T—-2,...,0:
G vG + Riaq
C(St, At) — C(St, At) + W

Q(St, At)  Q(St, At) C(SVZAt) G — Q(St, At)]

7w (S;) < argmax, Q(S;,a) (with ties broken consistently)
If A; # w(S;) then exit inner Loop (proceed to next episode)

1
W Wrams




Recap: Off-Policy Monte Carlo Control

Off-policy MC control, for estimating m ~ 7,

Initialize, for all s € §, a € A(s): Y WG Y WG,
Q(s,a) € R (arbitrarily) = == Questions:
C'(s,a) < 0 . - cC-W
m(s) < argmax, Q(s,a) (

1. WIll this procedure
converge to the

optimal policy 7*?

Loop forever (for each episode):
b < any soft policy
Generate an episode using b:

G+ 0 2. Why do we break
v when A, # 71(S,)?
Loop for each step of episode, t =T—1,T—-2,...,0: ! 1/
GG ")/G Rt_|_1
C(Sy, Ay) + C(Sy, A) + W 3. Why do the
Q(St, A¢) weights W not
7(St) + argmax, (5%, a with ties broken consistently) involve 7z( At | St)?

If A; # 7w(S;) then exit inner Loop (proceed to next episode)
1
W Wias,

)



|_earning from Experience

Suppose we are playing a blackjack-like game in person, but we don't
know the rules.

* We know the actions we can take, we can see the cards, and we get
told when we win or lose

Question: Could we compute an optimal policy using
dynamic programming in this scenario”

Question: Could we compute an optimal policy using Monte Carlo?

* \What would be the pros and cons of running Monte Carlo®



Bootstrapping

Bootstrapping bootstrapping
Learns from
experience M C

Requires full
dynamics D P

 Dynamic programming bootstraps: Each iteration's estimates are based
partly on estimates from previous iterations

 Each Monte Carlo estimate is based only on actual returns



Upaates

Dynamic Programming: V(S,) < Z m(als,) Z p(s,r|S, a) [1” + yV(s /)]

Monte Carlo: V(S,) < V($) + a IGt — V(St)]

TD(0): V(S,) < V(S) + a [R,,y + 7V(S,1) — V(S))

A

Vo (3) : Jﬂ:Gt ‘ S = 3] Monte Carlo: Approximate because of E

= Er[Rip1 + Gy | Sp=5]

= tW:RHl + WUW(St+1) | St :8] . Dynamic programming:
Approximate because v_ not known

TD(0): Approximate because of E and v_ not known



TD(0) Algorithm

Tabular TD(0) for estimating v,

Input: the policy m to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A < action given by 7 for S

Take action A, observe R, S’

V(S) <+ V(S)+a|R+~V(S) —V(9)]
S+ 5

until S 1s terminal

Question: What information does this algorithm use?



1D for Control

* We can plug ID prediction into the generalized policy iteration framework

 Monte Carlo control loop:
1. Generate an episode using estimated &

2. Update estimates of Q and 7

 On-policy TD control loop:

1. Take an action according to &

2. Update estimates of Q and 7



On-Policy TD Control

Sarsa (on-policy TD control) for estimating () = q¢.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize (s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from () (e.g., e-greedy)

Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S using policy derived from @) (e.g., e-greedy)
Q(S, 4) « Q(S. 4) + a[R+1Q(S', A') - Q(S, A)]
S+ S A+ A

until S 1s terminal

Question: \What information does this algorithm use?

Question: Will this estimate the Q-values of the optimal policy?



Actual Q-Values vs.
Optimal Q-Values

e Just as with on-policy Monte Carlo control, Sarsa does not converge to the
optimal policy, because it always chooses an e-greedy action

* And the estimated Q-values are with respect to the actual actions, which
are €-greedy

e Question: Why is it necessary to choose e-greedy actions?

 \What if we acted e€-greedy, but learned the Q-values for the optimal policy?



Off-Policy TD Control

Q-learning (off-policy TD control) for estimating 7 ~ T,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode: I
Choose A from S using policy derived from @ (e.g., e-greedy)

Take action A, observe R, S’
Q(S,A) + Q(S,A) + a| R + ymax, Q(S',a) — Q(S, A)]
S« 5’ e © o

until S i1s terminal

Question: What information does this algorithm use”?

Question: \Why aren't we estimating the policy 7 explicitly?



Example The CIift

(undiscounted)
R =-1

Safer path

Optimal path

S The Cliff G

Agent gets -1 reward until they reach the goal state

Step into the Cliff region, get reward -100 and go back to start
Question: How will Q-Learning estimate the value of state”?

Question: How will Sarsa estimate the value of state?



Performance on The Cliff

Sarsa
D5 -
Sum of _50 -
rewards Q-learning
during
episode s
-100 I I | | I
0 100 200 300 400 500
Episodes

Q-Learning estimates optimal policy, but Sarsa consistently
outperforms Q-Learning. (why?)



Summary

Temporal Difference Learning bootstraps and learns from experience

* Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap
Prediction: TD(0) algorithm
Sarsa estimates action-values of actual e-greedy policy

Q-Learning estimates action-values of optimal policy while executing an
e-greedy policy



