
Temporal Difference Learning

CMPUT 366: Intelligent Systems

S&B §6.0-6.2, §6.4-6.5

Lecture Overview

1. Recap

2. TD Prediction

3. On-Policy TD Control (Sarsa)

4. Off-Policy TD Control (Q-Learning)

Recap: Monte Carlo RL
• Monte Carlo estimation: Estimate expected returns to a state or action by

averaging actual returns over sampled trajectories

• Estimating action values requires either exploring starts or a
soft policy (e.g., -greedy)

• Off-policy learning is the estimation of value functions for a target policy
based on episodes generated by a different behaviour policy

• Off-policy control is learning the optimal policy (target policy) using
episodes from a behaviour policy

ϵ

Recap: Off-Policy Monte Carlo Prediction110 Chapter 5: Monte Carlo Methods

O↵-policy MC prediction (policy evaluation) for estimating Q ⇡ q⇡

Input: an arbitrary target policy ⇡
Initialize, for all s 2 S, a 2 A(s):

Q(s, a) 2 R (arbitrarily)
C(s, a) 0

Loop forever (for each episode):
b any policy with coverage of ⇡
Generate an episode following b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0, while W 6= 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

W W ⇡(At|St)

b(At|St)

5.7 O↵-policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods
we consider in this book: o↵-policy methods. Recall that the distinguishing feature of
on-policy methods is that they estimate the value of a policy while using it for control.
In o↵-policy methods these two functions are separated. The policy used to generate
behavior, called the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, called the target policy. An advantage of this separation is
that the target policy may be deterministic (e.g., greedy), while the behavior policy can
continue to sample all possible actions.

O↵-policy Monte Carlo control methods use one of the techniques presented in the
preceding two sections. They follow the behavior policy while learning about and
improving the target policy. These techniques require that the behavior policy has a
nonzero probability of selecting all actions that might be selected by the target policy
(coverage). To explore all possibilities, we require that the behavior policy be soft (i.e.,
that it select all actions in all states with nonzero probability).

The box on the next page shows an o↵-policy Monte Carlo control method, based on
GPI and weighted importance sampling, for estimating ⇡⇤ and q⇤. The target policy
⇡ ⇡ ⇡⇤ is the greedy policy with respect to Q, which is an estimate of q⇡. The behavior
policy b can be anything, but in order to assure convergence of ⇡ to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This can be
assured by choosing b to be "-soft. The policy ⇡ converges to optimal at all encountered
states even though actions are selected according to a di↵erent soft policy b, which may
change between or even within episodes.

5.7. O↵-policy Monte Carlo Control 111

O↵-policy MC control, for estimating ⇡ ⇡ ⇡⇤

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
⇡(s) argmax

a
Q(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

⇡(St) argmax
a
Q(St, a) (with ties broken consistently)

If At 6= ⇡(St) then exit inner Loop (proceed to next episode)
W W 1

b(At|St)

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insu�cient
experience with o↵-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
di↵erence learning, the algorithmic idea developed in the next chapter. Alternatively, if �
is less than 1, then the idea developed in the next section may also help significantly.

Exercise 5.11 In the boxed algorithm for o↵-policy MC control, you may have been
expecting the W update to have involved the importance-sampling ratio ⇡(At|St)

b(At|St)
, but

instead it involves 1

b(At|St)
. Why is this nevertheless correct? ⇤

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, �1, or 0 in each step, for a total of
nine (3⇥ 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are �1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the

Recap: Off-Policy Monte Carlo Control

Questions:

1. Will this procedure
converge to the
optimal policy ?

2. Why do we break
when ?

3. Why do the
weights not
involve ?

π*

At ≠ π(St)

W
π(At ∣ St)

Recap: Off-Policy Monte Carlo Control5.7. O↵-policy Monte Carlo Control 111

O↵-policy MC control, for estimating ⇡ ⇡ ⇡⇤

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
⇡(s) argmax

a
Q(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
W 1
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

⇡(St) argmax
a
Q(St, a) (with ties broken consistently)

If At 6= ⇡(St) then exit inner Loop (proceed to next episode)
W W 1

b(At|St)

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insu�cient
experience with o↵-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
di↵erence learning, the algorithmic idea developed in the next chapter. Alternatively, if �
is less than 1, then the idea developed in the next section may also help significantly.

Exercise 5.11 In the boxed algorithm for o↵-policy MC control, you may have been
expecting the W update to have involved the importance-sampling ratio ⇡(At|St)

b(At|St)
, but

instead it involves 1

b(At|St)
. Why is this nevertheless correct? ⇤

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, �1, or 0 in each step, for a total of
nine (3⇥ 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are �1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the

Qn =
∑n

i=1 WiGi

∑n
i=1 Wi

=
∑n

i=1 WiGi

C − W

Qn+1 =
∑n+1

i=1 WiGi

∑n+1
i=1 Wi

=
(C − W)Qn + WG

C

=
C
C

Qn −
W
C

Qn +
W
C

G = Qn +
W
C [G − Qn]

Learning from Experience
• Suppose we are playing a blackjack-like game in person, but we don't

know the rules.

• We know the actions we can take, we can see the cards, and we get
told when we win or lose

• Question: Could we compute an optimal policy using
dynamic programming in this scenario?

• Question: Could we compute an optimal policy using Monte Carlo?

• What would be the pros and cons of running Monte Carlo?

Bootstrapping

• Dynamic programming bootstraps: Each iteration's estimates are based
partly on estimates from previous iterations

• Each Monte Carlo estimate is based only on actual returns

 
Bootstrapping

No
bootstrapping

Learns from
experience MC

Requires full
dynamics DP

TD

Updates
Dynamic Programming:

Monte Carlo:

TD(0):

V(St) ← ∑
a

π(a |St)∑
s′ ,r

p(s′ , r |St, a)[r + γV(s′)]

V(St) ← V(St) + α [Gt − V(St)]

V(St) ← V(St) + α [Rt+1 + γV(St+1) − V(St)]

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

Monte Carlo: Approximate because of 𝔼

Dynamic programming:

Approximate because not knownvπ

TD(0): Approximate because of 𝔼 and not knownvπ

TD(0) Algorithm

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

6.1. TD Prediction 121

Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination
this can take us a long way toward obtaining the advantages of both Monte Carlo and
DP methods.

TD(0)

Shown to the right is the backup diagram for tabular TD(0). The value
estimate for the state node at the top of the backup diagram is updated on
the basis of the one sample transition from it to the immediately following
state. We refer to TD and Monte Carlo updates as sample updates because
they involve looking ahead to a sample successor state (or state–action pair),
using the value of the successor and the reward along the way to compute a
backed-up value, and then updating the value of the original state (or state–
action pair) accordingly. Sample updates di↵er from the expected updates
of DP methods in that they are based on a single sample successor rather than on a
complete distribution of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the di↵erence between the estimated value of St and the better estimate
Rt+1 + �V (St+1). This quantity, called the TD error, arises in various forms throughout
reinforcement learning:

�t

.
= Rt+1 + �V (St+1) � V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, �t is the error in V (St), available at time
t + 1. Also note that if the array V does not change during the episode (as it does not in
Monte Carlo methods), then the Monte Carlo error can be written as a sum of TD errors:

Gt � V (St) = Rt+1 + �Gt+1 � V (St) + �V (St+1) � �V (St+1) (from (3.9))

= �t + �
�
Gt+1 � V (St+1)

�

= �t + ��t+1 + �2
�
Gt+2 � V (St+2)

�

= �t + ��t+1 + �2�t+2 + · · · + �T�t�1�T�1 + �T�t
�
GT � V (ST)

�

= �t + ��t+1 + �2�t+2 + · · · + �T�t�1�T�1 + �T�t
�
0 � 0

�

=
T�1X

k=t

�k�t�k. (6.6)

This identity is not exact if V is updated during the episode (as it is in TD(0)), but if the
step size is small then it may still hold approximately. Generalizations of this identity
play an important role in the theory and algorithms of temporal-di↵erence learning.

Exercise 6.1 If V changes during the episode, then (6.6) only holds approximately; what
would the di↵erence be between the two sides? Let Vt denote the array of state values
used at time t in the TD error (6.5) and in the TD update (6.2). Redo the derivation
above to determine the additional amount that must be added to the sum of TD errors
in order to equal the Monte Carlo error. ⇤

Question: What information does this algorithm use?

TD for Control
• We can plug TD prediction into the generalized policy iteration framework

• Monte Carlo control loop:

1. Generate an episode using estimated

2. Update estimates of and

• On-policy TD control loop:

1. Take an action according to

2. Update estimates of and

π

Q π

π

Q π

On-Policy TD Control

Question: What information does this algorithm use?

Question: Will this estimate the Q-values of the optimal policy?

130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be used
here because termination is not guaranteed for all policies. If a policy was ever found
that caused the agent to stay in the same state, then the next episode would never end.
Online learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else.

Exercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than the

6.4. Sarsa: On-policy TD Control 129

arbitrary target policy ⇡ and covering behavior policy b, using at each step t the importance
sampling ratio ⇢t:t (5.3). ⇤

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade o↵ exploration and exploitation, and again approaches fall into two main classes:
on-policy and o↵-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate q⇡(s, a) for the current behavior
policy ⇡ and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v⇡. Recall that an episode consists of an alternating
sequence of states and state–action pairs:

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state–action pair to state–action pair,
and learn the values of state–action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �Q(St+1, At+1)�Q(St, At)

i
. (6.7)

Sarsa

This update is done after every transition from a nonterminal state St. If
St+1 is terminal, then Q(St+1, At+1) is defined as zero. This rule uses every
element of the quintuple of events, (St, At, Rt+1, St+1, At+1), that make up a
transition from one state–action pair to the next. This quintuple gives rise to
the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown
to the right.

It is straightforward to design an on-policy control algorithm based on the Sarsa
prediction method. As in all on-policy methods, we continually estimate q⇡ for the
behavior policy ⇡, and at the same time change ⇡ toward greediness with respect to q⇡.
The general form of the Sarsa control algorithm is given in the box on the next page.

The convergence properties of the Sarsa algorithm depend on the nature of the policy’s
dependence on Q. For example, one could use "-greedy or "-soft policies. Sarsa converges
with probability 1 to an optimal policy and action-value function as long as all state–action
pairs are visited an infinite number of times and the policy converges in the limit to
the greedy policy (which can be arranged, for example, with "-greedy policies by setting
" = 1/t).

Exercise 6.8 Show that an action-value version of (6.6) holds for the action-value form
of the TD error �t = Rt+1 + �Q(St+1, At+1)�Q(St, At), again assuming that the values
don’t change from step to step. ⇤

Actual Q-Values vs.
Optimal Q-Values

• Just as with on-policy Monte Carlo control, Sarsa does not converge to the
optimal policy, because it always chooses an -greedy action

• And the estimated Q-values are with respect to the actual actions, which
are -greedy

• Question: Why is it necessary to choose -greedy actions?

• What if we acted -greedy, but learned the Q-values for the optimal policy?

ϵ

ϵ

ϵ

ϵ

Off-Policy TD Control

Question: What information does this algorithm use?

Question: Why aren't we estimating the policy explicitly?π

6.5. Q-learning: O↵-policy TD Control 131

usual four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by
the wind? ⇤
Exercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the e↵ect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. ⇤

6.5 Q-learning: O↵-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o↵-policy TD control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a

Q(St+1, a)�Q(St, At)
i
. (6.8)

In this case, the learned action-value function, Q, directly approximates q⇤, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an e↵ect in that it determines which state–action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, Q has been shown to converge with probability 1 to
q⇤. The Q-learning algorithm is shown below in procedural form.

Q-learning (o↵-policy TD control) for estimating ⇡ ⇡ ⇡⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0

until S is terminal

134 Chapter 6: Temporal-Di↵erence Learning

Q-learning Expected Sarsa

Figure 6.4: The backup diagrams for Q-learning and Expected Sarsa.

over Sarsa over a wide range of values for the step-size parameter ↵. In cli↵ walking
the state transitions are all deterministic and all randomness comes from the policy. In
such cases, Expected Sarsa can safely set ↵ = 1 without su↵ering any degradation of
asymptotic performance, whereas Sarsa can only perform well in the long run at a small
value of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results Expected Sarsa was used on-policy, but in general it
might use a policy di↵erent from the target policy ⇡ to generate behavior, in which case
it becomes an o↵-policy algorithm. For example, suppose ⇡ is the greedy policy while
behavior is more exploratory; then Expected Sarsa is exactly Q-learning. In this sense
Expected Sarsa subsumes and generalizes Q-learning while reliably improving over Sarsa.
Except for the small additional computational cost, Expected Sarsa may completely
dominate both of the other more-well-known TD control algorithms.

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
construction of their target policies. For example, in Q-learning the target policy is
the greedy policy given the current action values, which is defined with a max, and in
Sarsa the policy is often "-greedy, which also involves a maximization operation. In these
algorithms, a maximum over estimated values is used implicitly as an estimate of the
maximum value, which can lead to a significant positive bias. To see why, consider a
single state s where there are many actions a whose true values, q(s, a), are all zero but
whose estimated values, Q(s, a), are uncertain and thus distributed some above and some
below zero. The maximum of the true values is zero, but the maximum of the estimates
is positive, a positive bias. We call this maximization bias.

Example 6.7: Maximization Bias Example The small MDP shown inset in
Figure 6.5 provides a simple example of how maximization bias can harm the performance
of TD control algorithms. The MDP has two non-terminal states A and B. Episodes
always start in A with a choice between two actions, left and right. The right action
transitions immediately to the terminal state with a reward and return of zero. The
left action transitions to B, also with a reward of zero, from which there are many
possible actions all of which cause immediate termination with a reward drawn from a
normal distribution with mean �0.1 and variance 1.0. Thus, the expected return for
any trajectory starting with left is �0.1, and thus taking left in state A is always a

Example: The Cliff

• Agent gets -1 reward until they reach the goal state

• Step into the Cliff region, get reward -100 and go back to start

• Question: How will Q-Learning estimate the value of this state?

• Question: How will Sarsa estimate the value of this state?

132 Chapter 6: Temporal-Di↵erence Learning

What is the backup diagram for Q-learning? The rule (6.8) updates a state–action
pair, so the top node, the root of the update, must be a small, filled action node. The
update is also from action nodes, maximizing over all those actions possible in the next
state. Thus the bottom nodes of the backup diagram should be all these action nodes.
Finally, remember that we indicate taking the maximum of these “next action” nodes
with an arc across them (Figure 3.4-right). Can you guess now what the diagram is? If
so, please do make a guess before turning to the answer in Figure 6.4 on page 134.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa and Q-learning,
highlighting the di↵erence between on-policy (Sarsa) and o↵-policy (Q-learning) methods.

Reward
per

epsiode

� � ��

� ��

� ��

� ��

� ��� ��� ��� ~�� ���

Episodes

Sarsa

Q-learning

S G

T h e C l i f f

 R

Sum of
rewards
during

episode

R = -1

Safer path

Optimal path

R = -100

Episodes

Sarsa

Q-learning

S G

r = � � ��

T h e C l i f f

r =�� � sa

op

R

R

Sum of
rewards
during

episode

R = -1

safe path

optimal path

R = -100

Episodes

-25

-50

-75

-100
0 100 200 300 400 500

Consider the gridworld shown to the
right. This is a standard undis-
counted, episodic task, with start
and goal states, and the usual ac-
tions causing movement up, down,
right, and left. Reward is �1 on all
transitions except those into the re-
gion marked “The Cli↵.” Stepping
into this region incurs a reward of
�100 and sends the agent instantly
back to the start.

The graph to the right shows the
performance of the Sarsa and Q-
learning methods with "-greedy ac-
tion selection, " = 0.1. After an
initial transient, Q-learning learns
values for the optimal policy, that
which travels right along the edge
of the cli↵. Unfortunately, this re-
sults in its occasionally falling o↵
the cli↵ because of the "-greedy ac-
tion selection. Sarsa, on the other
hand, takes the action selection into
account and learns the longer but
safer path through the upper part
of the grid. Although Q-learning ac-
tually learns the values of the opti-
mal policy, its online performance
is worse than that of Sarsa, which
learns the roundabout policy. Of course, if " were gradually reduced, then both methods
would asymptotically converge to the optimal policy.

Exercise 6.11 Why is Q-learning considered an o↵-policy control method? ⇤
Exercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? ⇤

𝛾=1 (undiscounted)

Performance on The Cliff

132 Chapter 6: Temporal-Di↵erence Learning

What is the backup diagram for Q-learning? The rule (6.8) updates a state–action
pair, so the top node, the root of the update, must be a small, filled action node. The
update is also from action nodes, maximizing over all those actions possible in the next
state. Thus the bottom nodes of the backup diagram should be all these action nodes.
Finally, remember that we indicate taking the maximum of these “next action” nodes
with an arc across them (Figure 3.4-right). Can you guess now what the diagram is? If
so, please do make a guess before turning to the answer in Figure 6.4 on page 134.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa and Q-learning,
highlighting the di↵erence between on-policy (Sarsa) and o↵-policy (Q-learning) methods.

Reward
per

epsiode

� � ��

� ��

� ��

� ��

� ��� ��� ��� ~�� ���

Episodes

Sarsa

Q-learning

S G

T h e C l i f f

 R

Sum of
rewards
during

episode

R = -1

Safer path

Optimal path

R = -100

Episodes

Sarsa

Q-learning

S G

r = � � ��

T h e C l i f f

r =�� � sa

op

R

R

Sum of
rewards
during

episode

R = -1

safe path

optimal path

R = -100

Episodes

-25

-50

-75

-100
0 100 200 300 400 500

Consider the gridworld shown to the
right. This is a standard undis-
counted, episodic task, with start
and goal states, and the usual ac-
tions causing movement up, down,
right, and left. Reward is �1 on all
transitions except those into the re-
gion marked “The Cli↵.” Stepping
into this region incurs a reward of
�100 and sends the agent instantly
back to the start.

The graph to the right shows the
performance of the Sarsa and Q-
learning methods with "-greedy ac-
tion selection, " = 0.1. After an
initial transient, Q-learning learns
values for the optimal policy, that
which travels right along the edge
of the cli↵. Unfortunately, this re-
sults in its occasionally falling o↵
the cli↵ because of the "-greedy ac-
tion selection. Sarsa, on the other
hand, takes the action selection into
account and learns the longer but
safer path through the upper part
of the grid. Although Q-learning ac-
tually learns the values of the opti-
mal policy, its online performance
is worse than that of Sarsa, which
learns the roundabout policy. Of course, if " were gradually reduced, then both methods
would asymptotically converge to the optimal policy.

Exercise 6.11 Why is Q-learning considered an o↵-policy control method? ⇤
Exercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? ⇤

Q-Learning estimates optimal policy, but Sarsa consistently
outperforms Q-Learning. (why?)

Summary
• Temporal Difference Learning bootstraps and learns from experience

• Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

• Monte Carlo learns from experience, but doesn't bootstrap

• Prediction: TD(0) algorithm

• Sarsa estimates action-values of actual -greedy policy

• Q-Learning estimates action-values of optimal policy while executing an
-greedy policy

ϵ

ϵ

