Monte Carlo Prediction
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1. Recap & Logistics

2. Monte Carlo Prediction



Assignment #3

* Assignment #3 is due Mar 29 (next Monday) at 11:59pm

e [hisis afirm deadline



Recap: In-Place lterative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)

Vi(s) < >, m(als) ) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, |lv —V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)



Recap: Policy Improvement [ heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) > v (s) VseEJS.

f you are never worse off at any state by following z’ for one step and then

following 7 forever after, then following 7z’ forever has a higher expected value
at every state.



Recap: Pollcy teration

Ty — Uy —> T —> Vg, — Mg — +++ — Ty — Uy

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € S

2. Policy Evaluation
Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
V(s) < >y, p(8',r|s,m(s)) [r + vV ()]

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax, ) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and m = m,; else go to 2




Recap: Value lteration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

a

= max ZP(S/, r|s,a) [7‘ + yvk(S’)]

s’ r

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € o:
v+ V(s)
V(s) < max, ), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + WV(S/)}




terative Policy evaluation
N GridWorlo

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 5 0.6

03| 21 | 09 | 1.3 | 0.2

-03|1 04| 03| 04 | -0.1

-0.3| 0.0 | 0.0 | 0.1 | -0.2

-0.5|-03|-0.3]|-0.3 ]| -0.6
Vatk =1




terative Policy evaluation
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terative Policy evaluation
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Example: Blackjack

Player gets two cards, dealer gets 1

Player can hit (get a new card) as many times as they like, or stick (stop
hitting)

After the player is done, the dealer hits / sticks according to a fixed rule
Whoever has the most points (sum of card values) wins

But, if you have more than 21 points, you lose immediately ("bust”)



Simulating Blackjack

* (Given a policy for the player, it is very easy to simulate a game of Blackjack
* Question: Is it easy to compute the full dynamics?

* Question: Is it easy to run iterative policy evaluation?



EXperience vs. expectation

* |n order to compute expected updates, we need to know the exact
probability of every possible transition

e Often we don't have access to the full probabillity distribution, but we do
have access to samples of experience

1. Actual experience: \We want to learn based on interactions with a real
environment, without knowing its dynamics

2. Simulated experience: \We can simulate the dynamics, but we don't

have an explicit representation of transition probabilities, or there are
too0 many states




Monte Carlo Estimation

Instead of estimating expectations by a weighted sum over all possibilities,
estimate expectation by averaging over a sample drawn from the distribution:

n

|
- X] = Zf(x)x ~ ;in where X; ~ f

X =1




Monte Carlo Prediction

Use a large sample of episodes generated by a policy i to estimate the
state-values v_(s) for each state s

 We will consider only episodic tasks for now

Question: What is the return G, for state S, = s in a given episode?

We can estimate the expected return v_(s) = E[G, | S, = s] by averaging
the returns for that state in every episode containing a visit to s




First-visit Monte Carlo Prediction

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € S
Returns(s) < an empty list, for all s € S

Loop forever (for each episode):
(Generate an episode following w: So, Ao, R1,S51, A1, Ro, ..., S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =1—1,T—2,...,0:
G+ VvG + Ry
Unless S; appears in So, S1,...,5¢_1:
Append G to Returns(St)
V (St) < average(Returns(St))




Monte Carlo vs.
Dynamic Programming

Ilterative policy evaluation uses the estimates of the next
state's value to update the value of this state

* Only needs to compute a single transition to update a
state's estimate

 Needs access to full model of dynamics

Monte Carlo estimate of each state's value is
Independent from estimates of other states' values

 Needs the entire episode to compute an update
» (Can focus on evaluating a subset of states if desired

 Does not require access to dynamics

. @—( )—eo+—)




Summary

Monte Carlo estimation estimates values by averaging returns over
sample episodes

* Does not require access to full model of dynamics

* Does require access to an entire episode for each sample



