Policy Iteration & Monte Carlo Prediction

CMPUT 366: Intelligent Systems

S&B §4.3-4.4, 5.0-5.2

Lecture Outline

- 1. Recap & Logistics
- 2. Policy Iteration
- 3. Monte Carlo Prediction

Assignment #3

- Assignment #3 is due Mar 29 (next Monday) at 11:59pm
- Reminder that TAs are available during office hours 5 days/week to help
- TensorFlow tutorial in today's office hour:
 - Wednesday Mar 24 at 2:00pm
 - see eClass for Google Meet link

Recap: Value Functions

State-value function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

Action-value function

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \sum_{a} \pi(a | s) \sum_{s'} \sum_{r} p(s', r | s, a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \right] \\ &= \sum_{a} \pi(a | s) \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right] \end{aligned}$$

- v_{π} is the unique solution to π 's (state-value) Bellman equation
- There is also a Bellman equation for π 's action-value function

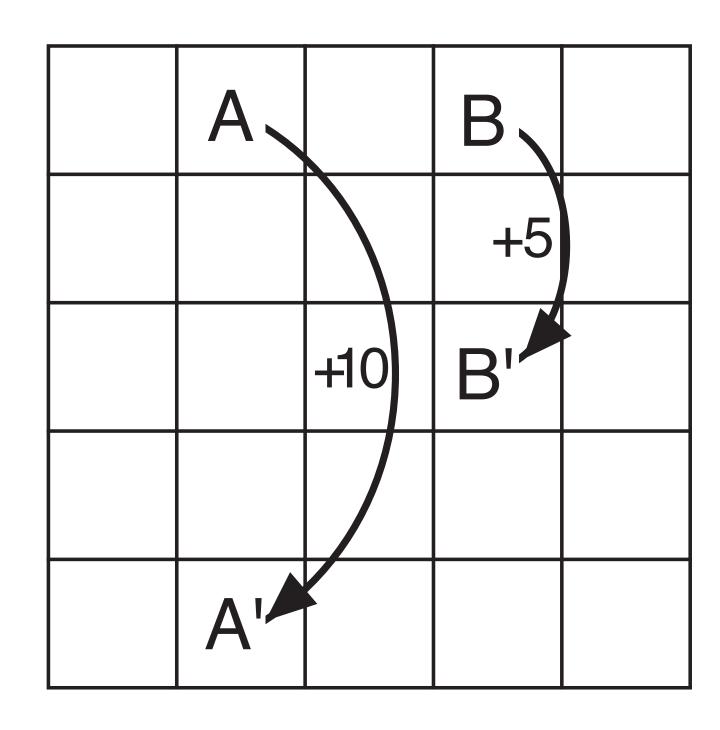
In-Place Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathbb{S}: v \leftarrow V(s) V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta,|v-V(s)|) until \Delta < \theta
```

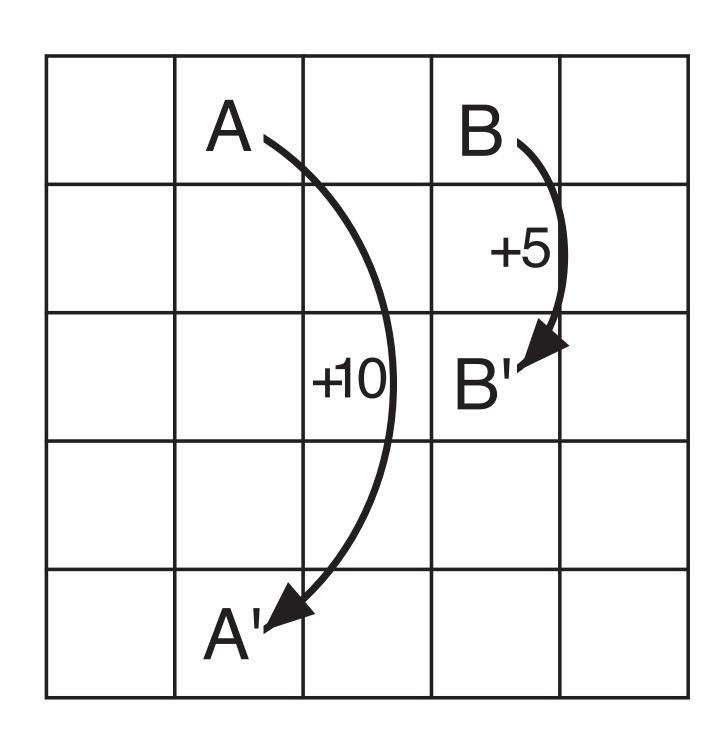
- The updates are in-place: we use new values for V(s) immediately instead of waiting for the current sweep to complete (why?)
- These are expected updates: Based on a weighted average (expectation)
 of all possible next states (instead of what?)

Iterative Policy Evaluation



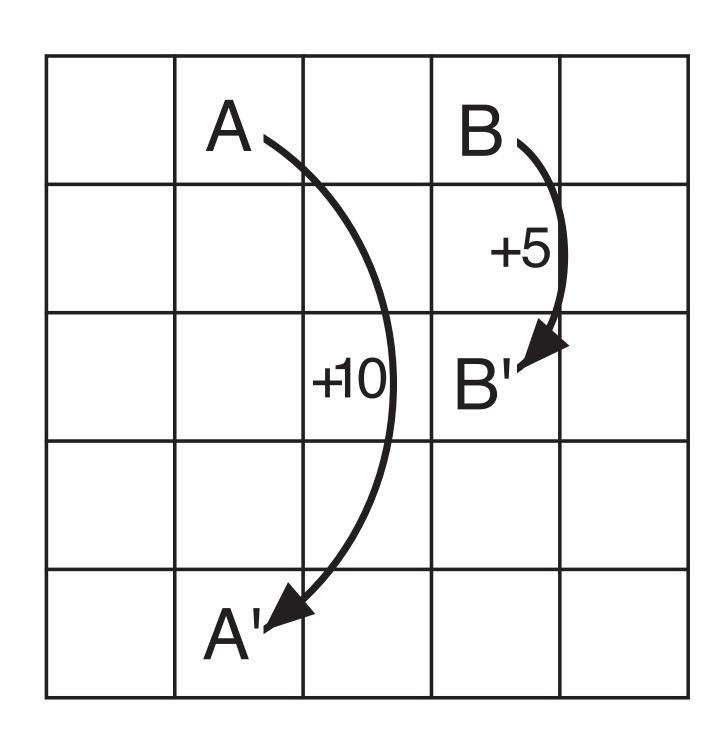
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

Iterative Policy Evaluation in GridWorld



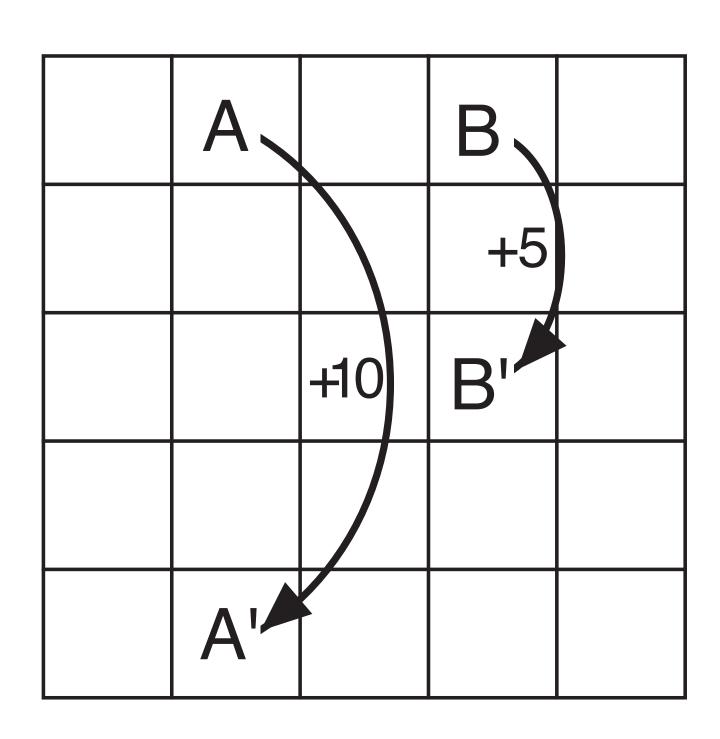
-0.5	10	2	5	0.6
-0.3	2.1	0.9	1.3	0.2
-0.3	0.4	0.3	0.4	-0.1
-0.3	0.0	0.0	0.1	-0.2
-0.5	-0.3	-0.3	-0.3	-0.6

Iterative Policy Evaluation in GridWorld



1.4	9.7	3.7	5.3	1.0
0.4	2.5	1.8	1.7	0.4
-0.2	0.6	0.6	0.5	-0.1
-0.5	0.0	0.0	0.0	-0.5
-1.0	-0.6	-0.5	-0.5	-1.0

Iterative Policy Evaluation in GridWorld



3.4	8.9	4.5	5.3	1.5
1.6	3.0	2.3	1.9	0.6
0.1	0.8	0.7	0.4	-0.4
-1.0	-0.4	-0.3	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Policy Improvement Theorem

Theorem:

Let π and π' be any pair of deterministic policies.

If
$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
,

then
$$v_{\pi'}(s) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
.

If you are never worse off **at any state** by following π' for **one step** and then following π forever after, then following π' forever has a higher expected value **at every state**.

Policy Improvement Theorem Proof

$$v_{\pi}(s) \le q_{\pi}(s, \pi'(s))$$

Policy Improvement Theorem Proof

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = \pi'(s)]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) | S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(S_{t+2}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3}) \mid S_{t} = s]$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots \mid S_{t} = s]$$

$$= v_{\pi'}(s).$$

Greedy Policy Improvement

Given any policy π , we can construct a new greedy policy π' that is guaranteed to be at least as good:

$$\pi'(s) \doteq \arg \max_{a} q_{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \arg \max_{a} \sum_{s',r} p(s', r | s, a) [r + \gamma v_{\pi}(s')].$$

- If this new policy is **not better** than the old policy, then $v_{\pi}(s) = v_{\pi'}(s)$ for all $s \in \mathcal{S}$ (why?)
- Also means that the new (and old) policies are optimal (why?)

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

This is a lot of iterations! Is it necessary to run to completion?

Value Iteration

Value iteration interleaves the estimation and improvement steps:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \, | \, S_t = s, A_t = a \right]$$
$$= \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \left[r + \gamma v_k(s') \right]$$

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$| \Delta \leftarrow 0$$

$$| \text{Loop for each } s \in \mathbb{S}:$$

$$| v \leftarrow V(s)$$

$$| V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$| \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

$$| \text{until } \Delta < \theta$$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Policy Iteration Summary

- An optimal policy has higher state value than any other policy at every state
- A policy's state-value function can be computed by iterating an expected update based on the Bellman equation
- Given any policy π , we can compute a greedy improvement π' by choosing highest expected value action based on v_π
- Policy iteration: Repeat:

 Groody improvement using 12 then re-
 - Greedy improvement using v_{π} , then recompute v_{π}
- Value iteration: Repeat:
 - Recompute v_{π} by assuming greedy improvement at every update

Example: Blackjack

- Player gets two cards, dealer gets 1
- Player can hit (get a new card) as many times as they like, or stick (stop hitting)
- After the player is done, the dealer hits / sticks according to a fixed rule
- Whoever has the most points (sum of card values) wins
- But, if you have more than 21 points, you lose immediately ("bust")

Simulating Blackjack

- Given a policy for the player, it is very easy to simulate a game of Blackjack
- Question: Is it easy to compute the full dynamics?
- Question: Is it easy to run iterative policy evaluation?

Experience vs. Expectation

- In order to compute expected updates, we need to know the exact probability of every possible transition
- Often we don't have access to the full probability distribution, but we do have access to samples of experience
 - 1. **Actual experience:** We want to learn based on interactions with a **real environment**, without knowing its dynamics
 - 2. **Simulated experience:** We can **simulate** the dynamics, but we don't have an **explicit representation** of transition probabilities, or there are **too many states**

Monte Carlo Estimation

 Instead of estimating expectations by a weighted sum over all possibilities, estimate expectation by averaging over a sample drawn from the distribution:

$$\mathbb{E}[X] = \sum_{x} f(x)x \approx \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{where } x_i \sim f$$

Monte Carlo Prediction

- Use a large sample of episodes generated by a policy π to estimate the state-values $v_{\pi}(s)$ for each state s
 - We will consider only episodic tasks for now
- Question: What is the return G_t for state $S_t = s$ in a given episode?
- We can estimate the expected return $v_\pi(s)=\mathbb{E}[G_t\mid S_t=s]$ by averaging the returns for that state in every episode containing a visit to s

First-visit Monte Carlo Prediction

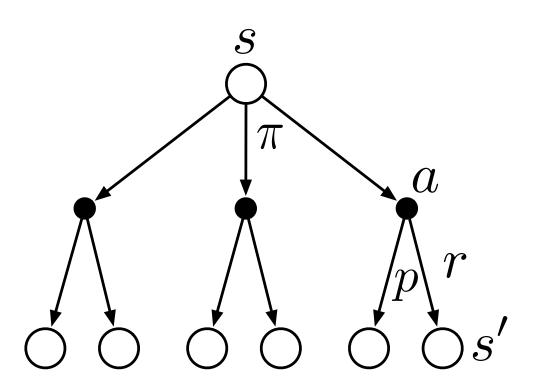
First-visit MC prediction, for estimating $V \approx v_{\pi}$

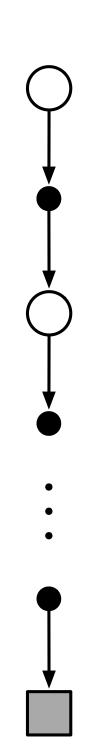
```
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
    Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
             Append G to Returns(S_t)
              V(S_t) \leftarrow \text{average}(Returns(S_t))
```

Monte Carlo vs. Dynamic Programming

• Iterative policy evaluation uses the estimates of the next state's value to update the value of this state

- Monte Carlo estimate of each state's value is independent from estimates of other states' values
 - Needs the entire episode to compute an update
 - Can focus on evaluating a subset of states if desired





Summary

Monte Carlo estimation estimates values by averaging returns over sample episodes

- Does not require access to full model of dynamics
- Does require access to an entire episode for each sample