Policy Iteration &
Monte Carlo Prediction

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap & Logistics
2. Policy lteration

3. Monte Carlo Prediction

Assignment #3

* Assignment #3 is due Mar 29 (next Monday) at 11:59pm
 Reminder that TAs are available during office hours 5 days/week to help
 TensorFlow tutorial in today's office hour:

 Wednesday Mar 24 at 2:00pm

* see eClass for Google Meet link

Recap: Value Functions
State-value function
V]Z'(S) = _n[Gt‘St — S]
S, = S]
Action-value function
q.(s,a)=LE_[G,|S, =s,A =da]

— [E k
— [Z / Rt+k+1
k=0
— [E k
— Lz [Z Y Ry gy
k=0

St=s,At=a]

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:
V]Z'(S) = _n[Gt‘St = 5]
AR 7G| S, = 5]

2 r(als) Z Zp(s’, rls,a) [r + YE 1[G, 15,1 = s’]]

= Z i(al|s) ZP(SQ rls,@)|r+yvy(s))]

 V_Iis the unique solution to 's (state-value) Bellman equation

 T[hereis also a Bellman equation for 's action-value function

IN-Place [terative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)

terative Policy Evaluation

+0

AI

Reward dynamics

0.0 (00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0
Vatk =0

terative Policy evaluation
N GridWorlo

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 5 0.6

03| 21 | 09 | 1.3 | 0.2

-03|1 04| 03| 04 | -0.1

-0.3| 0.0 | 0.0 | 0.1 | -0.2

-0.5|-03|-0.3]|-0.3]| -0.6
Vatk =1

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

14 | 97 | 3.7 | 53 | 1.0

04 | 25 | 18 | 1.7 | 0.4

-0.2 |1 06 | 06 | 0.5 | -0.1

-0.5| 0.0 | 0.0 | 0.0 | -0.5

-10|-06 | -0.5| -0.5]| -1.0
Vatk =2

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

34 | 89 | 45 | 53 | 1.5
16 | 3.0 | 23 | 1.9 | 0.6
01 | 08 | 0.7 | 04 | -04
-10| -04 | -0.3 | -0.6 | -1.2
-19 |13 |-12]|-14]| -2.0

Vatk = 10000

Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) > v (s) VseEJS.

f you are never worse off at any state by following z’ for one step and then

following 7 forever after, then following 7z’ forever has a higher expected value
at every state.

Policy Improvement [heorem Prooft

vr(8) < gn(s, 7 (s))

Policy Improvement [heorem Prooft

Vr(S)

<

o IA

VA

VA

qr (s, (3))

“3[Rt 1 —|—’7U7T(St 1) | St:S,At:’iT,(S)]

“377/:Rt_|_1 -+ ’YUW(St—I—l) | St :S]

Co[Riv1 + Yqr (Si41, 7 (Se41)) | St =]

Ce[Rip1 + VEx[Rigo + y0r (Seq2)|Se41, A1 =7 (Si41)] | St =]

ORY :Rt—l—l Y42 WQUW(SHQ) ‘ StZS]

e/ :Rt—l—l + YRt + VZRHS T ”ngw(StJr?)) | S :S]

U [Rt_|_1 + ’YRH_Q + ”YQRH_g + ’YSRH_zL + .- ‘ St :S}

U/ (S)

Greedy Policy Improvement

Given any policy 7, we can construct a new greedy policy z’ that is guaranteed to be
at least as good:

7'(s) = arg max q,(s, a)

=argmax E[R,_; +yv (S DI|S, =s,A, =d]

A

= arg me ;p(s s, a) [r + yv_ (s)] .

« If this new policy is not better than the old policy, then v_(s) = v_.(s) forall s € &
(why?)

e Also means that the new (and old) policies are optimal (why?)

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

a
— mjx gp(s Jrls, a) [r + yvi(s)]

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}

Policy lteration Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update

Example: Blackjack

Player gets two cards, dealer gets 1

Player can hit (get a new card) as many times as they like, or stick (stop
hitting)

After the player is done, the dealer hits / sticks according to a fixed rule
Whoever has the most points (sum of card values) wins

But, if you have more than 21 points, you lose immediately ("bust”)

Simulating Blackjack

* (Given a policy for the player, it is very easy to simulate a game of Blackjack
* Question: Is it easy to compute the full dynamics?

* Question: Is it easy to run iterative policy evaluation?

EXperience vs. expectation

* |n order to compute expected updates, we need to know the exact
probability of every possible transition

e Often we don't have access to the full probabillity distribution, but we do
have access to samples of experience

1. Actual experience: \We want to learn based on interactions with a real
environment, without knowing its dynamics

2. Simulated experience: \We can simulate the dynamics, but we don't

have an explicit representation of transition probabilities, or there are
too0 many states

Monte Carlo Estimation

* [nstead of estimating expectations by a weighted sum over

all possibilities, estimate expectation by averaging over a sample drawn
from the distribution:

n

1
- X] = ;f(x)x ~ ;in where X; ~ f

=1

Monte Carlo Prediction

Use a large sample of episodes generated by a policy i to estimate the
state-values v_(s) for each state s

 We will consider only episodic tasks for now

Question: What is the return G, for state S, = s in a given episode?

We can estimate the expected return v_(s) = E[G, | S, = s] by averaging
the returns for that state in every episode containing a visit to s

First-visit Monte Carlo Prediction

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € S
Returns(s) < an empty list, for all s € S

Loop forever (for each episode):
(Generate an episode following w: So, Ao, R1,S51, A1, Ro, ..., S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =1—1,T—2,...,0:
G+ VvG + Ry
Unless S; appears in So, S1,...,5¢_1:
Append G to Returns(St)
V (St) < average(Returns(St))

Monte Carlo vs.

Dynami

C Programming

Ilterative policy evaluation uses the estimates of the
next state's value to update the value of this state

e Only needs to

compute a single transition to update

a state's estimate

Monte Carlo esti

mate of each state's value Is

iIndependent fror

N estimates of other states' values

 Needs the entire episode to compute an update

e (Can focus on

evaluating a subset of states if desired

o—)—eo+—)

Summary

Monte Carlo estimation estimates values by averaging returns over
sample episodes

* Does not require access to full model of dynamics

* Does require access to an entire episode for each sample

