Optimality and
Dynamic Programming

CMPUT 366: Intelligent Systems

. Assignment #3

o &~ W b

| ecture Outline

Recap
Optimality
Policy Evaluation

Policy Improvement

Assignment #3

e Assignment #3 is due Mar 29 (next Monday) at 11:59pom
 Reminder that TAs are available during office hours 5 days/week to help
 mlpl and cnn need to train and evaluate the specified models

e train: fit parameters using provided training dataset

* evaluate: compute loss on both provided test datasets

Recap: Value Functions
State-value function
V]Z'(S) = _n[Gt‘St — S]
S, = S]
Action-value function
q.(s,a)=LE_[G,|S, =s,A =da]

— [E k
— [Z / Rt+k+1
k=0
— [E k
— Lz [Z Y Ry gy
k=0

St=s,At=a]

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:
V]Z'(S) = _n[Gt‘St = 5]
AR 7G| S, = 5]

2 r(als) Z Zp(s’, rls,a) [r + YE 1[G, 15,1 = s’]]

= Z i(al|s) ZP(SQ rls,@)|r+yvy(s))]

 V_Iis the unique solution to 's (state-value) Bellman equation

 T[hereis also a Bellman equation for 's action-value function

Recap: GridWorld Example

3.3

8.8

4.4

5.3

1.5

+0

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

AI

-1.0

-0.4

-0.4

-0.6

-1.2

Reward dynamics

-1.9

-1.3

-1.2

1.4

-2.0

State-value function v_for
random policy

n(a|s)=0.25

GridWorld with Bounds Checking

What about a policy where we never try to go over an edge”?

A B 3.3(8.8/4.4/5.3|1.5 6.7 [10.8) 6.4 | 6.7 | 4.3
+5 1.5[3.0/ 2.3/ 1.9/ 0.5 4.24.7|3.7|3.4|2.8

H0| | B 0.1 0.7/ 0.7/ 0.4|-0.4 241241211917
-1.0-0.4/-0.4/-0.6/-1.2 1.5(1.4(1.3|1.2|1.1

A' -1.9/-1.3/-1.2/-1.4/-2.0 1.1(1.0/0.9/0.9|0.9

State-value function v_for

Reward dynamics random policy hound q '
2(a | s) = 0.25 ounded random policy 7

State-value function v_g for
B

Optimality
Question: What is an optimal policy?
A policy T is (weakly) better than a policy 7’ if it is better forall s € &
r>n <= v(s) =>vAs) VseJ.
An optimal policy . iIs weakly better than every other policy
All optimal policies share the same state-value function: (why?)

v:($) = max v_(s)

Also the same action-value function:

g:(s,a) = max q,(s, a)

Bellman Optimality Equations

* V. must satisfy the Bellman equation too

e |nfact, it can be written in a special, policy-free way because we know that every state value is
maximized by 7x:

v«(s) = max g, (s, a)
a

=max[E_[G,| S, =s,A,=d]

=max E, [R, +7Gy | S, =5,A,=al

A

=max E[R, | +yv«($,.) | §;, =5,A, =d]

A

= max Zp(s', r|s,a)r+ yv(s)]

s’ r

Bellman Optimality Equations

U
vi(s) = max B[R | + yv«(S, D[S, = 5,A, = d] " /45\
a

S
max
= max Zp(s’, rls,a)[r + yv«(s’)] A A
. s'r

Q*(Sa a) — L

R +ymaxg«(5,,a’)
a

St — S’At — Cl] (q*) A
S/
r 4+ y max g«(s’, a’)] max/8\ /8\

=) p(s.rls.a)
s’ r

Optimal GridWorld

22.0

24.4

22.0

19.4

17.5

B
+§
0| | B’

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

AI

16.0

17.8

16.0

14.4

13.0

Gridworld

14.4

16.0

14.4

13.0

11.7

IR

N
T
:
T
T

LILIL L

RN
RRREE

~
x

Policy Evaluation

Question: How can we compute v_?

1. We know that v_ is the unique solution to the Bellman equations, so we
could just solve them

* put that is tedious and annoying and slow
* Also requires a complete model of the dynamics
2. Iterative policy evaluation

* Jakes advantage of the recursive formulation

terative Policy Evaluation

e |terative policy evaluation uses the Bellman equation as an update rule;

Vip1(8) = B[R + 7yviSiq1 |15, = 5]
Z r(als) Z p(s’,rls,a) [r + yvk(s’)]

» V_is a fixed point of this update, by definition

» Furthermore, starting from an arbitrary v, the sequence {v, } wil
converge tov_as k — oo

IN-Place [terative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)

terative Policy Evaluation

+0

AI

Reward dynamics

0.0 (00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0
Vatk =0

terative Policy evaluation
N GridWorlo

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 5 0.6

03| 21 | 09 | 1.3 | 0.2

-03|1 04| 03| 04 | -0.1

-0.3| 0.0 | 0.0 | 0.1 | -0.2

-0.5|-03|-0.3]|-0.3]| -0.6
Vatk =1

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

14 | 97 | 3.7 | 53 | 1.0

04 | 25 | 18 | 1.7 | 0.4

-0.2 |1 06 | 06 | 0.5 | -0.1

-0.5| 0.0 | 0.0 | 0.0 | -0.5

-10|-06 | -0.5| -0.5]| -1.0
Vatk =2

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

34 | 89 | 45 | 53 | 1.5
16 | 3.0 | 23 | 1.9 | 0.6
01 | 08 | 0.7 | 04 | -04
-10| -04 | -0.3 | -0.6 | -1.2
-19 |13 |-12]|-14]| -2.0

Vatk = 10000

Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) > v (s) VseEJS.

f you are never worse off at any state by following z’ for one step and then

following 7 forever after, then following 7z’ forever has a higher expected value
at every state.

Policy Improvement [heorem Prooft

Vr(S)

<

o IA

VA

VA

qr (s, (3))

“3[Rt 1 —|—’7U7T(St 1) | St:S,At:’iT,(S)]

“377/:Rt_|_1 -+ ’YUW(St—I—l) | St :S]

Co[Riv1 + Yqr (Si41, 7 (Se41)) | St =]

Ce[Rip1 + VEx[Rigo + y0r (Seq2)|Se41, A1 =7 (Si41)] | St =]

ORY :Rt—l—l Y42 WQUW(SHQ) ‘ StZS]

e/ :Rt—l—l + YRt + VZRHS T ”ngw(StJr?)) | S :S]

U [Rt_|_1 + ’YRH_Q + ”YQRH_g + ’YSRH_zL + .- ‘ St :S}

U/ (S)

Greedy Policy Improvement

Given any policy 7, we can construct a new greedy policy z’ that is guaranteed to be
at least as good:

7'(s) = arg max q,(s, a)

=argmax E[R, ., +yv, (S IS, =5, A, =da]

a

= arg mjx gp(s s, a) [r + yv_ (s)] .

« If this new policy is not better than the old policy, then v_(s) = v_.(s) forall s € &
(why?)

e Also means that the new (and old) policies are optimal (why?)

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

a
— mjx gp(s Jrls, a) [r + yvi(s)]

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}

Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update

