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Assignment #3

e Assignment #3 is due Mar 29 (next Monday) at 11:59pom
 Reminder that TAs are available during office hours 5 days/week to help
 mlpl and cnn need to train and evaluate the specified models

e train: fit parameters using provided training dataset

* evaluate: compute loss on both provided test datasets



Recap: Value Functions
State-value function
V]Z'(S) = _n[Gt‘St — S]
S, = S]
Action-value function
q.(s,a)=LE_[G,|S, =s,A =da]
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Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:
V]Z'(S) = _n[Gt‘St = 5]
AR 7G| S, = 5]

2 r(als) Z Zp(s’, rls,a) [r + YE 1[G, 15,1 = s’]]

= Z i(al|s) ZP(SQ rls,@)|r+yvy(s))]

 V_Iis the unique solution to 's (state-value) Bellman equation

 T[hereis also a Bellman equation for 's action-value function



Recap: GridWorld Example
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GridWorld with Bounds Checking

What about a policy where we never try to go over an edge”?

A B 3.3(8.8/4.4/5.3|1.5 6.7 [10.8) 6.4 | 6.7 | 4.3
+5 1.5[3.0/ 2.3/ 1.9/ 0.5 4.24.7|3.7|3.4|2.8

H0| | B 0.1 0.7/ 0.7/ 0.4|-0.4 241241211917
-1.0-0.4/-0.4/-0.6/-1.2 1.5(1.4(1.3|1.2|1.1

A' -1.9/-1.3/-1.2/-1.4/-2.0 1.1(1.0/0.9/0.9|0.9

State-value function v_for
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Optimality
Question: What is an optimal policy?
A policy T is (weakly) better than a policy 7’ if it is better forall s € &
r>n <= v(s) =>vAs) VseJ.
An optimal policy . iIs weakly better than every other policy
All optimal policies share the same state-value function: (why?)

v:($) = max v_(s)

Also the same action-value function:

g:(s,a) = max q,(s, a)



Bellman Optimality Equations

* V. must satisfy the Bellman equation too

e |nfact, it can be written in a special, policy-free way because we know that every state value is
maximized by 7x:

v«(s) = max g, (s, a)
a

=max[E_[G,| S, =s,A,=d]

=max E, [R, +7Gy | S, =5,A,=al

A

=max E[R, | +yv«($,.) | §;, =5,A, =d]

A

= max Zp(s', r|s,a)r+ yv(s)]

s’ r




Bellman Optimality Equations

U
vi(s) = max B[R | + yv«(S, D[S, = 5,A, = d] " /45\
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Q*(Sa a) — L
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Optimal GridWorld
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Policy Evaluation

Question: How can we compute v_?

1. We know that v_ is the unique solution to the Bellman equations, so we
could just solve them

* put that is tedious and annoying and slow
* Also requires a complete model of the dynamics
2. Iterative policy evaluation

* Jakes advantage of the recursive formulation



terative Policy Evaluation

e |terative policy evaluation uses the Bellman equation as an update rule;

Vip1(8) = B[R + 7yviSiq1 |15, = 5]
Z r(als) Z p(s’,rls,a) [r + yvk(s’)]

» V_is a fixed point of this update, by definition

» Furthermore, starting from an arbitrary v, the sequence {v, } wil
converge tov_as k — oo



IN-Place [terative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als) ) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)



terative Policy Evaluation
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terative Policy evaluation
N GridWorlo
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terative Policy evaluation

N GridWorld
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terative Policy evaluation

N GridWorld
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Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) > v (s) VseEJS.

f you are never worse off at any state by following z’ for one step and then

following 7 forever after, then following 7z’ forever has a higher expected value
at every state.



Policy Improvement [heorem Prooft
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Greedy Policy Improvement

Given any policy 7, we can construct a new greedy policy z’ that is guaranteed to be
at least as good:

7'(s) = arg max q,(s, a)

=argmax E[R, ., +yv, (S IS, =5, A, =da]

a

= arg mjx gp(s s, a) [r + yv_ (s )] .

« If this new policy is not better than the old policy, then v_(s) = v_.(s) forall s € &
(why?)

e Also means that the new (and old) policies are optimal (why?)



Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax, ) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2




Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

a
— mjx gp(s Jrls, a) [r + yvi(s )]

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max, ), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}




Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update




