Policies and Value Functions

CMPUT 366: Intelligent Systems

S&B §3.5

Lecture Outline

- 1. Recap & Logistics
- 2. Policies & Value Functions
- 3. Bellman Equations

Recap: Interacting with the Environment

At each time t = 1, 2, 3, ...

- 1. Agent receives input denoting current state S_t
- 2. Agent chooses action A_t
- 3. Next time step, agent receives **reward** R_{t+1} and **new state** S_{t+1} , chosen according to a distribution $p(s', r \mid s, a)$

This interaction between agent and environment produces a trajectory: $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$

Recap: Episodic vs Continuing Returns

- in a special **terminal state** S_T .
- **Definition:** A task is **continuing** if it **does not end** (i.e., $T = \infty$).

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

Definition: A task is episodic if it ends after some finite number T of time steps

Definition: The return G_t after time t is the sum of rewards received after time t:

• For episodic tasks, discount rate $\gamma = 1$. For continuing tasks, $\gamma < 1$.

Policies

Question: How should an agent in a Markov decision process choose its actions?

- Markov assumption: The state incorporates all of the necessary information about the history up until this point
 - state S_t regardless of how you got there
- So the agent can choose its actions based only on S_{t}
- This is called a (memoryless) policy: $\pi(a \mid s) \in [0,1]$ is the probability of taking action a given that the current state is s

• i.e., Probabilities of future rewards & transitions are the same from

State-Value Function

- Once you know the **policy** π and the **dynamics** p, you can compute the probability of every possible state transition starting from any given state
- It is often valuable to know the **expected return** starting from a given state *s* under a given policy π (**why?**)
- The state-value function v_{π} returns this quantity:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s] \quad \forall t$$
$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s \right]$$

Action-Value Function

from state *s* if we

1. Take action *a* in state $S_t = s_t$ and then

2. Follow policy π for every state

 $q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t | S_t]$ $= \mathbb{E}_{\pi} \left[\begin{array}{c} \infty \\ \sum \end{array} \right]$ *k*=0

The action-value function $q_{\pi}(s, a)$ estimates the expected return G_t starting

$$S_{t+1}$$
 afterward

$$= s, A_t = a]$$

$$\gamma^k R_{t+k+1} \left| S_t = s, A_t = a \right|$$

Value functions satisfy a recursive consistency condition called the **Bellman equation:**

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}] S_{t} = s] \\ &= \sum_{a} \pi(a | s) \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s']] \\ &= \sum_{a} \pi(a | s) \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')] \end{aligned}$$

- v_{π} is the unique solution to π 's Bellman equation
- There is also a Bellman equation for π 's action-value function

Bellman Equations

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3}$$
$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} \right)$$
$$= R_{t+1} + \gamma G_{t+1}$$

 $+ \dots$

Backup diagrams help to visualize the flow of information back to a state from its successor states or action-state pairs:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

= $\sum_{a} \pi(a | s) \sum_{s', r} p(s', r | s, a) [r - a]$

Backup Diagrams

Return to GridWorld

- At each cell, can go north, south, east, west
- Try to go off the edge: reward of -1
- Leaving state A: takes you to state A', reward of +10
- Leaving state **B**: takes you to state **B'**, reward of +5

Return to GridWorld

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a \mid s) = 0.25$

Summary

- Policies map states to (distribution over) actions
- Given a policy π , every state s has an expected value $v_{\pi}(s)$
 - and every action a from state s has value $q_{\pi}(s, a)$
 - These are the **state-value** and **action-value** functions
- State-value and action-value functions satisfy the Bellman equations