Recurrent
Neural Networks

CMPUT 366: Intelligent Systems

> W

| ecture Outline

. Recap

Unfolding Computations
Recurrent Neural Networks

Long Short-Term Memory

Recap:
Convolutional Neural Networks

* (Convolutional networks: Specialized architecture for images

 Number of parameters controlled by using convolutions
and pooling operations instead of dense connections

 Fewer parameters means more efficient to train

IIIII

uuuuuu

Kernel

(Images: Goodfellow 2016)

Sequence Modelling

 For many tasks, especially involving language, we want to model the
behaviour of sequences

« Example: Translation

« The cat is on the carpet — Le chat est sur le tapis

 Example: Sentiment analysis

 This pie is great — POSITIVE

« This pie is okay, not Sreat — NEUTRAL

 This pie is not okay — NEGATIVE

Sequential Inputs

The cat is on the carpet

Question: How should we represent sequential input
to a neural network”

1. 1-hot vector for each word O O carpet @
(Sequence must be a particular length) 8 ca 8 8
2. 1-hot vector for last few words the @ O O
(n-gram) O carpet @
O O
3. Single vector indicating each word that is present . 2 8
(lbag of words)
4. Single vector summing the semantic embeddings carpet @
of all the words ca 8

Dynamical Systems

A dynamical system is a system whose state at
time ¢ + 1 depends on its state at time t:

s = f(s""; 0)

* An expression that depends on the same expression
at an earlier time Is recurrent.

(T

Unfolding Computations

* A recurrent expression can be converted to a non-recurrent
expression by unfolding:

s©) = f(s); 0)
= f(f(s"; 0); 0)

\ -7 f -

External Signals

* Dynamical systems can also be driven by external signals;
() — f(s(t_l), X(t); 0)

* [hese systems can also be represented by non-recurrent, unfolded
computations:

Recurrent Neural Networks

* Recurrent neural network: a specialized architecture for modelling

sequential data
carpet @

* |nput presented one element at a time x(0) — 8
e Parameter sharing by: ©
* [reating the seguence as a system with state
* [ntroducing hidden layers that represent state

 Computing state transitions and output using same functions at each
stage

Recurrent Hidden Units:
Seqguence to Sequence

* |nput values x connected to hidden state h
by weights U

 Hidden state h mapped to output o by
weights V

o Hidden state h"V connected to hidden
state h'” by weights W

* (Gradients computed by back propagation
through time: from final loss all the way back
to initial input.

)
—

* All hidden states computed must be stored
for computing gradients

Recurrent Hidden Units:
Seqguence to Single Output

o Update state as inputs are provided

* Only compute a single output at the end

« W, U still shared at every stage

~ =

e Back propagation through time still
requires evaluating every state in
gradient computation

Encoder/Decoder Architecture for
Seqguence to Sequence

Encoder

Can combine approaches for
seqguence-to-sequence:

1. Accept entire input to construct a
single "context" output C

2. (Construct new segquence using
context C as only input

UUUUUU

Recurrence through
(only) Outputs

; ! * (Can have recurrence go from output

(at t — 1) to hidden (at 7) instead of
hidden to hidden

* |Less general (why?)

this?

V \
Lo
@) e Question: WWhy would we want to do

leacher Forcing

 Dependence on previous step Is only

w on output, not hidden state

* Loss gradient depends only on a
single transition

* Training can be parallelized (don't
need to compute previous states to
compute current state)

V Vv
U U

Train time Test time

| ong-Range Dependence

The submarine, which was the subject of a well known song by the Beatles, was yellow.

‘\ /

* [nformation sometimes needs to be
accumulated for a long part of the
seguence
@ But how long an individual piece of
\%
U

iINnformation should be accumulated Is
W= context-dependent

~-c e (Often need to accumulate information
N the state, and then forget it later

|_ong Short-Term Memory

output

self-loop

LSTM networks replace regular hidden units
with cells

Input feature computed with regular neuron

Feature accumulated into state only if input
gate allows it

State decays according to value of forget gate

Output can be shut off by the output gate

Summary

* Nalvely representing sequential inputs for a neural network requires
infeasibly many input nodes (and hence parameters)

* Recurrent neural networks are a specialized architecture for handling
sequential inputs

o State accumulates across input elements

 Each stage computed from previous stage using same parameters

* Long short-term memory (LSTM) cells allow context-dependent
accumulation and forgetting

