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Logistics & Assignment #2

• Assignment #2 is available 
See eClass 

• Due Friday, March 5 at 11:59pm 

• Submissions past the deadline will have late penalty 
applied 

• Leave yourself some margin for error when submitting!



Recap: Supervised Learning
Definition: A supervised learning task consists of 

• A set of input features  

• A set of target features  

• A set of training examples, for which both input and target features are given 

• A set of test examples, for which only the input features are given 

The goal is to predict the values of the target features given the input features;  
i.e., learn a function  that will map features  to a prediction of  

• We want to predict new, unseen data well; this is called generalization 

• Can estimate generalization performance by reserving separate test examples

X1, …, Xn

Y1, …, Yk

h(x) X Y



Recap: Loss Functions
• A loss function gives a quantitative measure of a hypothesis's performance 

• There are many commonly-used loss functions, each with its own properties

Loss Definition

0/1 error

absolute error

squared error

worst case

likelihood

log-likelihood

∑
e∈E

1 [Y(e) ≠ ̂Y(e)]

∑
e∈E

Y(e) − ̂Y(e) .

∑
e∈E

(Y(e) − ̂Y(e))
2

.

max
e∈E

Y(e) − ̂Y(e) .

Pr(E) = ∏
e∈E

̂Y(e = Y(e))

log Pr(E) = ∑
e∈E

log ̂Y(e = Y(e)) .



Lecture Outline

1. Recap & Logistics 

2. Trivial Predictors 

3. Linear Decision Trees 

4. Linear Regression



Trivial Predictors

• The simplest possible predictor ignores all input features and just predicts the 
same value  for any example 

• Question: Why would we every want to think about these?

v



Optimal Trivial Predictors 
for Binary Data

Measure Optimal Prediction

0/1 error 0 if n0 > n1 else 1

absolute error 0 if n0 > n1 else 1

squared error

worst case

likelihood

log-likelihood

n1

n0 + n1

0 if n1 = 0
1 if n0 = 0
0.5 otherwise

n1

n0 + n1
n1

n0 + n1

• Suppose we are 
predicting a binary target 

•  negative examples 

•  positive examples 

• Question: What is the 
optimal single prediction?

n0

n1



Optimal Trivial Predictor Derivations

0/1 error 0 if n0 > n1 else 1 L(v) = vn1 + (1 − v)n0

log-likelihood
n1

n0 + n1
L(v) = n1 log v + n0 log(1 − v)

d
dv

L(v) = 0

0 =
n1

v
−

n0

1 − v
n0

1 − v
=

n1

v
v

1 − v
=

n1

n0
∧ (0 < v < 1) ⟹ v =

n1

n0 + n1



Decision Trees

Decision trees are a simple approach to classification 

Definition: 
A decision tree is a tree in which 

• Every internal node is labelled with a condition 
(Boolean function of an example) 

• Every internal node has two children, one labelled true and one labelled 
false 

• Every leaf node is labelled with a point estimate on the target



Decision Trees Example
Example Author Thread Length Where Action

e1 known new long home skips
e2 unknown new short work reads
e3 unknown followup long work skips
e4 known followup long home skips
e5 known new short home reads
e6 known followup long work skips
e7 unknown followup short work skips
e8 unknown new short work reads
e9 known followup long home skips
e10 known new long work skips
e11 unknown followup short home skips
e12 known new long work skips
e13 known followup short home reads
e14 known new short work reads
e15 known new short home reads
e16 known followup short work reads
e17 known new short home reads
e18 unknown new short work reads

Long

New

Unknown

skips

reads

skips reads

true false

true false

true false

Long
true false

skips reads with 
probability 0.82



Building Decision Trees

How should an agent choose a decision tree? 

• Bias: which decision trees are preferable to others? 

• Search: How can we search the space of decision trees? 

• Search space is prohibitively large 

• Idea: Choose features to branch on one by one



Tree Construction Algorithm
learn_tree(Cs, Y, Es): 
Input: conditions Cs; target feature Y; training examples Es 

if stopping condition is true: 
    v := point_estimate(Y, Es) 
    T(e) := v 
    return T 
else: 
    select condition c ∈ Cs 
    true_examples := { e ∈ Es | c(e) } 
    t1 := learn_tree(Cs \ {c}, Y, true_examples) 
    false_examples := { e ∈ Es | ¬c(e) } 
    t0 := learn_tree(Cs \ {c}, Y, false_examples) 
    T(e) := if c(e) then t1(e) else t0(e) 
      return T



Tree Construction Algorithm
learn_tree(Cs, Y, Es): 
Input: conditions Cs; target feature Y; training examples Es 

if stopping condition is true: 
    v := point_estimate(Y, Es) 
    T(e) := v 
    return T 
else: 
    select condition c ∈ Cs 
    true_examples := { e ∈ Es | c(e) } 
    t1 := learn_tree(Cs \ {c}, Y, true_examples) 
    false_examples := { e ∈ Es | ¬c(e) } 
    t0 := learn_tree(Cs \ {c}, Y, false_examples) 
    T(e) := if c(e) then t1 else t0 

      return T

Unspecified



Stopping Criterion
• Question: When must the algorithm stop? 

• No more conditions 

• No more examples 

• All examples have the same label 

• Additional possible criteria: 

• Minimum number of examples: Do not split a node with too few examples 
(why?) 

• Minimum child size: Do not split a node if there would be too few examples in 
one of the children (why?) 

• Improvement criteria: Do not split a node unless it improves some criterion 
sufficiently (why?) 

• Maximum depth: Do not split if the depth reaches a maximum (why?)



Leaf Point Estimates

• Question: What point estimate should go on the leaves? 

• Modal target value 

• Median target value (unless categorical) 

• Mean target value (unless categorical or ordinal) 

• Distribution over target values 

• Question: What point estimate optimally classifies the leaf's examples?



Split Conditions

• Question: What should the set of conditions be? 

• Boolean features can be used directly 

• Partition domain into subsets 

• E.g., thresholds for ordered features 

• One branch for each domain element



Choosing Split Conditions

• Question: Which condition should be chosen to split on? 

• Standard answer: myopically optimal condition 

• If this was the only split, which condition would result in the best 
performance?



Linear Regression

• Linear regression is the problem of fitting a linear function to a set of 
training examples 

• Both input and target features must be numeric 

• Linear function of the input features: 

̂Yw(e) = w0 + w1X1(e) + … + wnXn(e)

=
n

∑
i=0

wiXi(e)



Gradient Descent
• For some loss functions (e.g., sum of squares), linear regression has a 

closed-form solution 

• For others, we use gradient descent 

• Gradient descent is an iterative method to find the minimum of a 
function. 

• For minimizing error: 

wi := wi − η
∂

∂wi
error(E, w)



Gradient Descent Variations
• Incremental gradient descent: update each weight after each example 

in turn 

• Batched gradient descent: update each weight based on a batch of 
examples 

• Stochastic gradient descent: repeatedly choose example(s) at  random 
to update on 

∀ej ∈ E : wi := wi − η
∂

∂wi
error({ej}, w)

∀Ej : wi := wi − η
∂

∂wi
error(Ej, w)



Linear Classification 

• For binary targets represented by {0,1} and numeric input features, we 
can use linear function to estimate the probability of the class 

• Issue: we need to constrain the output to lie within [0,1] 

• Instead of outputting results of the function directly, send it through an 
activation function  instead: f : ℝ → [0,1]

̂Yw(e) = f (
n

∑
i=0

wiXi(e))



Logistic Regression

• A very commonly used activation function is the sigmoid or logistic 
function: 

• Linear classification with a logistic activation function is often referred to as 
logistic regression

sigmoid(x) =
1

1 + e−x



Non-Binary Target Features

What if the target feature has k > 2 values? 

1. Use k indicator variables 

2. Learn each indicator variable separately 

3. Normalize the predictions



Linear Regression Trees
• Learning algorithms can be combined 

• Example: Linear classification trees 

• Learn a decision tree until stopping criterion 

• If there are still features left in the leaf, learn a linear classifier on the 
remaining features 

• Example: Linear regression trees 

• Learn a decision tree with linear regression in the leaves 

• Splitting criterion has to perform linear regression for each considered 
split



Summary
• Decision trees:  

• Split on a condition at each internal node 

• Prediction on the leaves 

• Simple, general; often a building block for other methods 

• Linear Regression and Classification:  

• Fit a linear function to the input and target features 

• Often trained by gradient descent 

• For some loss functions, linear regression has a closed analytic form


