Probability Theory

CMPUT 366: Intelligent Systems



| ogistics & Assignment #1

 Midterm is March 15 (see eClass for other important dates)

 Assignment #1 was released on Monday
See eClass

* Due February 8 at 11:55pm
» (Office hours have begun!
 Not mandatory; for getting help from TAs
* New Monday office hours: 6:00-7:00pm Mountain time

* Python refreshers TODAY, Monday
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Recap:
Hill Climbing Problems

Foothills: Local maxima that are not global maxima
Plateaus: Regions of the state space where the score is uninformative
Ridges: Foothills that would not be foothills with a larger neighbourhood

Ignorance of the global optimum: Unless we reach a satisfying
assignment, we cannot be sure that an optimum returned by local search
s the global optimum.

Global
optimum

Foothill

Plateau



Recap:
Randomized Algorithms

* Adding random moves can fix some hill climbing problems

e [wo main kinds of random move:

1. Random restart: Start searching from a completely
random new location

2. Random step: Choose a random neighbour

e Stochastic random search: Add both kinds of random
moves to hill climbing



Recap:
Stochastic Local Search

Input: a constraint satisfaction problem; a neighbours function; a score
function to maximize; a stop_walk criterion; a random_step criterion

current ;= random assignment of values to variables
Incumbent = current
repeat
If ncumbent Is a satistying assignment:
return incumbent
if stop_walk():
current := new random assignment of values to variables
else if random_step):
current := a random element from neighbours(current)
else:
current .= n from neighbours(current) with maximum score(h)
if score(current) > score(incumbent):
iIncumbent := current



Iwo Examples

* (Consider two partial algorithms:
1. Hill climbing plus random restart
2. Hill climbing plus random steps

* Question: Which finds the maximum most easily
on each of these two search spaces”? Why?




Simulated Annealing

Idea: Start out by searching pretty randomly, but become more directed

* Intuition: Move to a good neighbourhood quickly, then search intensively
in that neighlbourhood

Maintain a "temperature" T

Choose new nodes more randomly at higher temperatures;
Gradually decrease the temperature (according to a cooling schedule)

At each step:

1. Randomly choose a neighbour new

2. Always accept (i.e., assign to current) if score(new) > score(current)
|(score(new)—score(current))/T]

3. Else, accept with probability €



Simulated Annealing cont.

0 (score(new)—score(current) /@

. Worse score(new) means lower acceptance probability * Higher T makes
- Higher acceptance
probability
. neighlbourhoods are good, because they are easier to search
. neighbourhoods are good, because they are more likely to contain

an improvement

e Simulated annealing allows for a large neighbourhood and efficient
searching

* You don't have to generate the whole neighbourhood, just randomly
construct a single neighbour



| ocal Search Summary

e For some problems, we only care about finding a goal node, not the actions
we took to find it

 Local search: Look for goal states by iteratively moving from a current
state to a neighbouring state

* Hill climbing: Always move to the highest-score neighbour
 Random step: Sometimes choose a random neighbour
 Random restart: Sometimes start again from an entirely random state

 Simulated annealing: Random moves start very random, become
more greedy over time



Recap: Search

Agent searches internal representation to find solution
Fully-observable, deterministic, offline, single-agent problems

Graph search finds a sequence of actions to a goal node

e Efficiency gains from using heuristic functions to encode
domain knowledge

Local search finds a goal node by repeatedly making small changes to the
current state

« Random steps and random restarts help handle local optima,
completeness
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| ecture Outline

. Recap

Uncertainty

Probabllity Semantics

Conditional Probability

—Xpected Value



Uncertainty

* |n search problems, agent has perfect knowledge of the world and its dynamics

* |n most applications, an agent cannot just make assumptions and then act
according to those assumptions

 Knowledge is uncertain:
 Must consider multiple hypotheses

 Must update beliefs about which hypotheses are likely given observations



Example: Wearing a Seatbelt

 An agent has to decide between three actions:
1. Drive without wearing a seatbelt
2. Drive while wearing a seatbelt
3. Stay home
e |f the agent thinks that an accident will happen, it will just stay home

* [f the agent thinks that an accident will not happen, it will not bother to wear a
seatbelt!

* \Wearing a seatbelt only makes sense because the agent is uncertain about
whether driving will lead to an accident.




Vieasuring Uncertainty

* Probability is a way of measuring uncertainty

* \We assign a number between O and 1 to events (hypotheses):
* 0 means absolutely certain that statement is false
* 1 means absolutely certain that statement is true

e |ntermediate values mean more or less certain

* Probabillity Is a measurement of uncertainty, not truth
e A statement with probability .75 is not "mostly true"

* Rather, we believe It is more likely to be true than not



Subjective vs. Objective:
1 he Frequentist Perspective

* Probabilities can be interpreted
as objective statements about the world, or
as subjective statements about an agent's beliefs.

* Objective view is called frequentist:

* [he probability of an event is the proportion of times it would happen in the
long run of repeated experiments

* Every event has a single, true probabillity

* Events that can only happen once don't have a well-defined probabillity



Subjective vs. Objective:
1he Bayesian Perspective

* Probabilities can be interpreted
as objective statements about the world, or
as subjective statements about an agent's beliefs.

e Subjective view is called Bayesian:

* [he probability of an event is a measure of an agent's belief about its likelihood

* Different agents can legitimately have different beliefs, so they can legitimately
assign different probabilities to the same event

 Thereis only one way to update those beliefs in response to new data

* |n this course, we will primarily take the Bayesian view



=xample: Dice

Diane rolls a fair, six-sided die, and gets the number X

» Question: What is P(X = 5)?

Diane truthfully tells Oliver that she rolled an odd number.

» Question: What should Oliver believe P(X = 5) is?

Diane truthfully tells Greta that she rolled a number > 5.
» Question: What should Greta believe P(X = J) is?

Question: What is P(X = 5)?



Semantics:
Fossible Worlds

« Random variables take values from a domain.
We will write them as uppercase letters (e.g., X, Y, D, etc.)

A possible world is a complete assignment of values to variables
We will usually write a single "world" as @ and the set of all possible worlds as €2

A probability measure is a function P : €2 — R over possible worlds w

satisfying:
1. Z Plw) =1
I=19)

2. Pw)>0 Vo € Q2



Propositions

A primitive proposition is an equality or inequality expression
Eg,. X=50rX>4

A proposition is built up from other propositions using logical connectives.
Eg,.X=1vX=3VvX=))

The probability of a proposition is the sum of the probabilities of the possible worlds in which that
proposition is true:

Pla) = Z P(w) w F a means "a is true in w"
w:wFao
Theretore:
P(aV p) > P(a) aVp means "a OR B"
P(a A ) < P(a) aAB means "a AND B"

P(ma)=1—- P(x) -a means "NOT a"



Joint Distributions

* |n our dice example, there was a single random variable
* We typically want to think about the interactions of multiple random variables

* A joint distribution assigns a probability to each full assignment of values to
variables

e eg9., PX=1,Y=))

* (Can view this as another way of specifying a single possible world



Joint Distrioution Example

Weather Temperature

* What might a day be like in Edmonton®?

Random variables: clear mild 020
e Weather, clear cold 0.30
with domain {clear, snowingj}
clear very cold 0.25
 Jemperature,
with domain {mild, cold, very_cold} snowing mild 0.05

P(Weather, Temperature):

snowing very cold 0.10



Question:

Marginalization s

Weather”?
* Marginalization is using a joint distribution Weather Temperature
P(X,,....,X ,...X )tocompute a
distribution over a smaller number of Clear mild 0.20
variables P(X;, ..., X
( I m) clear cold 0.30
 Smaller distribution is called the
marginal distribution of its variables clear very cold 0-25
 \We compute the marginal distribution by snowing mild 0.05
summing out the other variables:
snowing cold 0.10
PX.Y)= ) PXY.Z=2)
snowing very cold 0.10

z€dom(Z)



Conditional Probabillity

* Agents need to be able to update their beliefs based on new observations

* [his process is called conditioning

« We write P(h | e) to denote "probability of hypothesis £ given that we have
observed evidence e’

» P(h | e)is the probability of /1 conditional on e



Semantics of
Conditional Probability

—vidence e lets us rule out all of the worlds that are incompatible with e

 E.9., If | observe that the weather is clear, | should no longer assign any
probability to the worlds in which it is snowing

* We need to normalize the probabilities of the remaining worlds to ensure that
the probabillities of possible worlds sum to 1

1 .
P(w | e) = {%B(ﬂwhc af Icoé.f e,
Y OthaWSRise.



Conditional Probability Example

* My initial marginal belief
weather was:

about the

P(Weather = snow) = 0.25

e Suppose | observe that the

temperature is mild.

 Question: \What shou

d | now

believe about the wea

1. Rule out incompatible

her?

worlds

2. Normalize remaining probabilities

clear 20/ (.20 + .05) = 0.8

snowing .05/ (.20 + .05) = 0.2

—_—Ctet—-—-yery-cott—---5-25—

snowing mild 0.05

—sPowitrg——cott————6346—

S O WHA G S ol S M S e e



Chain Rule

Definition: conditional probability
P(h, e)
P(e)

P(h|e) =

* We can run this in reverse to get
P(h,e) = P(h | e) X P(e)
Definition: chain rule

P(O(l, ,Oln) — P(al) XP(az ‘ 0(1) X e XP(O(n | 0(1, ...,Oln_l)
— H?zlp(al ‘ al, ...,ai_l)



Bayes Rule

e From the chain rule, we have

P(h,e) = P(h | e)P(e)
= P(e | h)P(h)

« Often, P(e | h) is easier to compute than P(& | e).

Posterior l Prior

Bayes' Rule: \ /
_| Pe] b
_ - Evidence




=Xpected Value

» The expected value of a function f on a random variable is the weighted

average of that function over the domain of the random variable, weighted by
the probability of each value:

- [f00] = ), PX=x)f)

xedom(X)

 The conditional expected value of a function f is the average value of the
function over the domain, weighted by the conditional probability of each value:

‘[f(X)‘Y=Y] = Z PX =x|Y=y)fx)

xedom(X)




EXpected Value Examples

P(X)
P(X)




Summary

Probability is a numerical measure of uncertainty
Formal semantics:

* Weights over possible worlds sum to 1

* Probability of a proposition is total weight of possible worlds in which
that proposition is true

Conditional probability updates beliefs based on evidence

Expected value of a function is its probability-weighted average over
possible worlds



