Probability Theory

CMPUT 366: Intelligent Systems

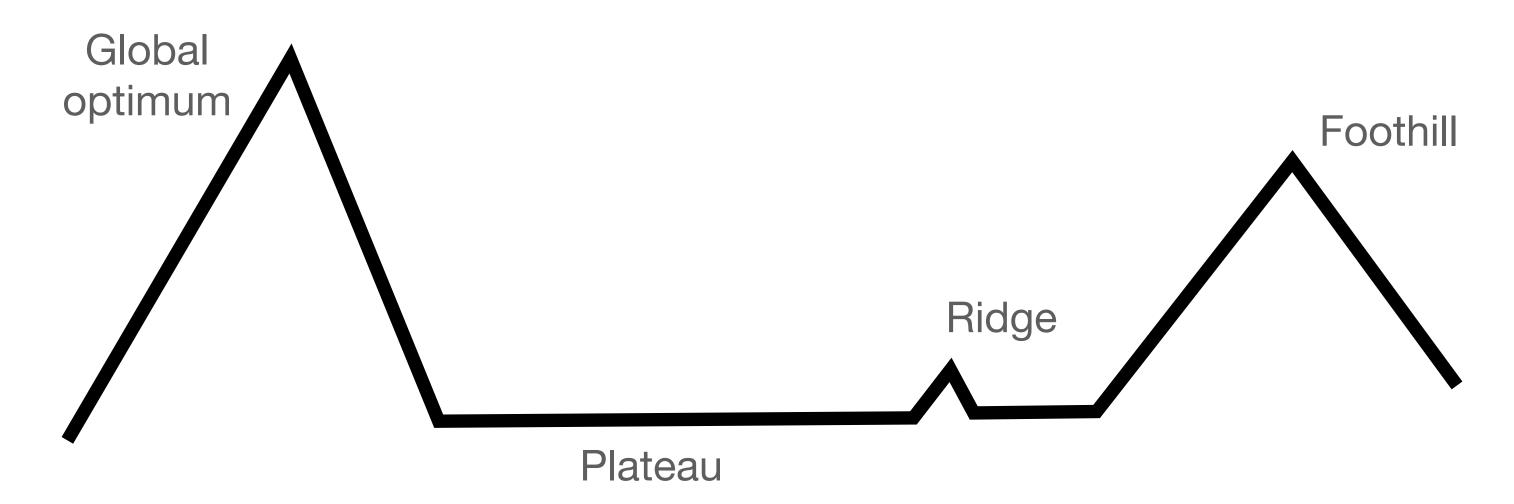
P&M §8.1

Logistics & Assignment #1

- Midterm is March 15 (see eClass for other important dates)
- Assignment #1 was released on Monday
 See eClass
 - Due February 8 at 11:55pm
- Office hours have begun!
 - Not mandatory; for getting help from TAs
 - New Monday office hours: 6:00-7:00pm Mountain time
 - Python refreshers TODAY, Monday

Recap: Hill Climbing Problems

- 1. Foothills: Local maxima that are not global maxima
- 2. Plateaus: Regions of the state space where the score is uninformative
- 3. Ridges: Foothills that would not be foothills with a larger neighbourhood
- 4. **Ignorance of the global optimum:** Unless we reach a satisfying assignment, we cannot be sure that an optimum returned by local search is the **global optimum**.



Recap: Randomized Algorithms

- Adding random moves can fix some hill climbing problems
- Two main kinds of random move:
 - Random restart: Start searching from a completely random new location
 - 2. Random step: Choose a random neighbour
- Stochastic random search: Add both kinds of random moves to hill climbing

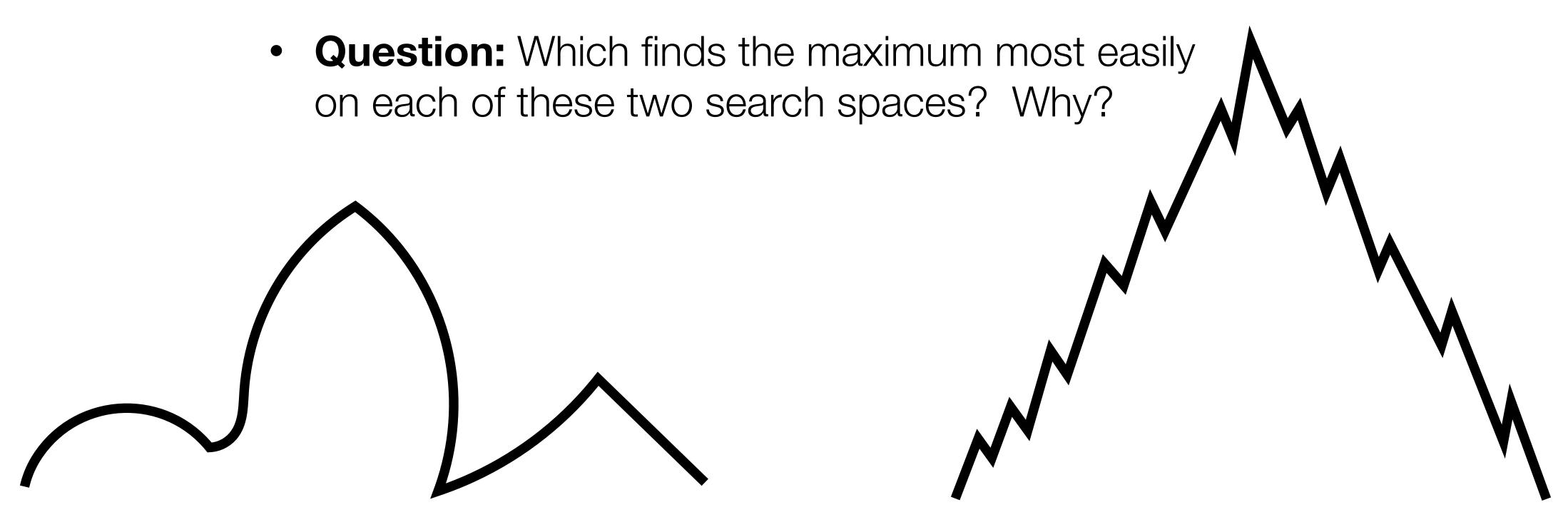
Recap: Stochastic Local Search

Input: a constraint satisfaction problem; a *neighbours* function; a *score* function to maximize; a *stop_walk* criterion; a *random_step* criterion

```
current := random assignment of values to variables
incumbent := current
repeat
  if incumbent is a satisfying assignment:
     return incumbent
  if stop_walk():
     current := new random assignment of values to variables
  else if random_step():
     current := a random element from neighbours(current)
  else:
     current := n from neighbours(current) with maximum score(n)
  if score(current) > score(incumbent):
     incumbent := current
```

Two Examples

- Consider two partial algorithms:
 - 1. Hill climbing plus random restart
 - 2. Hill climbing plus random steps



Simulated Annealing

- Idea: Start out by searching pretty randomly, but become more directed
 - Intuition: Move to a good neighbourhood quickly, then search intensively in that neighbourhood
- Maintain a "temperature" T
- Choose new nodes more randomly at higher temperatures; Gradually decrease the temperature (according to a cooling schedule)
- At each step:
 - 1. Randomly choose a neighbour *new*
 - 2. Always accept (i.e., assign to current) if score(new) > score(current)
 - 3. Else, accept with probability $e^{[(score(new)-score(current))/T]}$

Simulated Annealing cont.

$$e^{[(score(new)-score(current))/T]}$$

- Worse score(new) means lower acceptance probability
- Always negative (why?)

- Higher T makes negative value smaller
- Higher acceptance probability
- Small neighbourhoods are good, because they are easier to search
- Large neighbourhoods are good, because they are more likely to contain an improvement
- Simulated annealing allows for a large neighbourhood and efficient searching
 - You don't have to generate the whole neighbourhood, just randomly construct a single neighbour

Local Search Summary

- For some problems, we only care about finding a goal node, not the actions we took to find it
- Local search: Look for goal states by iteratively moving from a current state to a neighbouring state
 - Hill climbing: Always move to the highest-score neighbour
 - Random step: Sometimes choose a random neighbour
 - Random restart: Sometimes start again from an entirely random state
 - Simulated annealing: Random moves start very random, become more greedy over time

Recap: Search

- Agent searches internal representation to find solution
- Fully-observable, deterministic, offline, single-agent problems
- Graph search finds a sequence of actions to a goal node
 - Efficiency gains from using heuristic functions to encode domain knowledge
- Local search finds a goal node by repeatedly making small changes to the current state
 - Random steps and random restarts help handle local optima, completeness

Lecture Outline

- 1. Recap
- 2. Uncertainty
- 3. Probability Semantics
- 4. Conditional Probability
- 5. Expected Value

Uncertainty

- In search problems, agent has perfect knowledge of the world and its dynamics
- In most applications, an agent cannot just make assumptions and then act according to those assumptions
- Knowledge is uncertain:
 - Must consider multiple hypotheses
 - Must update beliefs about which hypotheses are likely given observations

Example: Wearing a Seatbelt

- An agent has to decide between three actions:
 - 1. Drive without wearing a seatbelt
 - 2. Drive while wearing a seatbelt
 - 3. Stay home
- If the agent thinks that an accident will happen, it will just stay home
- If the agent thinks that an accident will not happen, it will not bother to wear a seatbelt!
- Wearing a seatbelt only makes sense because the agent is uncertain about whether driving will lead to an accident.

Measuring Uncertainty

- Probability is a way of measuring uncertainty
- We assign a number between 0 and 1 to events (hypotheses):
 - 0 means absolutely certain that statement is false
 - 1 means absolutely certain that statement is true
 - Intermediate values mean more or less certain
- Probability is a measurement of uncertainty, not truth
 - A statement with probability .75 is not "mostly true"
 - Rather, we believe it is more likely to be true than not

Subjective vs. Objective: The Frequentist Perspective

- Probabilities can be interpreted
 as objective statements about the world, or
 as subjective statements about an agent's beliefs.
- Objective view is called **frequentist**:
 - The probability of an event is the proportion of times it would happen in the long run of repeated experiments
 - Every event has a single, true probability
 - Events that can only happen once don't have a well-defined probability

Subjective vs. Objective: The Bayesian Perspective

- Probabilities can be interpreted
 as objective statements about the world, or
 as subjective statements about an agent's beliefs.
- Subjective view is called **Bayesian**:
 - The probability of an event is a measure of an agent's belief about its likelihood
 - Different agents can legitimately have different beliefs, so they can legitimately assign different probabilities to the same event
 - There is only one way to update those beliefs in response to new data
- In this course, we will primarily take the Bayesian view

Example: Dice

- Diane rolls a fair, six-sided die, and gets the number X
 - Question: What is P(X=5)? (the probability that Diane rolled a 5)
- Diane truthfully tells Oliver that she rolled an odd number.
 - Question: What should Oliver believe P(X=5) is?
- Diane truthfully tells Greta that she rolled a number ≥ 5 .
 - Question: What should Greta believe P(X=5) is?
- Question: What is P(X = 5)?

Semantics: Possible Worlds

- Random variables take values from a domain. We will write them as uppercase letters (e.g., X, Y, D, etc.)
- A possible world is a complete assignment of values to variables We will usually write a single "world" as ω and the set of all possible worlds as Ω
- A **probability measure** is a function $P:\Omega\to\mathbb{R}$ over **possible worlds** ω satisfying:

1.
$$\sum_{\omega \in \Omega} P(\omega) = 1$$

2.
$$P(\omega) \ge 0 \ \forall \omega \in \Omega$$

Propositions

- A **primitive proposition** is an equality or inequality expression E.g., X = 5 or $X \ge 4$
- A **proposition** is built up from other propositions using **logical connectives**. E.g., $(X = 1 \lor X = 3 \lor X = 5)$
- The **probability** of a proposition is the sum of the probabilities of the possible worlds in which that proposition is true:

$$P(\alpha) = \sum_{\omega: \omega \models \alpha} P(\omega) \qquad \omega \models \alpha \text{ means "} \alpha \text{ is true in } \omega"$$

Therefore:

$$P(\alpha \lor \beta) \ge P(\alpha)$$
 $\alpha \lor \beta$ means " α OR β "

 $P(\alpha \land \beta) \le P(\alpha)$ $\alpha \land \beta$ means " α AND β "

 $P(\neg \alpha) = 1 - P(\alpha)$ $\neg \alpha$ means "NOT α "

Joint Distributions

- In our dice example, there was a single random variable
- We typically want to think about the interactions of multiple random variables
- A joint distribution assigns a probability to each full assignment of values to variables
 - e.g., P(X = 1, Y = 5). Equivalent to $P(X 1 \land Y = 5)$
 - Can view this as another way of specifying a single possible world

Joint Distribution Example

- What might a day be like in Edmonton?
 Random variables:
 - Weather,
 with domain {clear, snowing}
 - Temperature,
 with domain {mild, cold, very_cold}
- Joint distribution
 P(Weather, Temperature):

Weather	Temperature	P
clear	mild	0.20
clear	cold	0.30
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
snowing	very cold	0.10

Marginalization

Question:

What is the marginal distribution of Weather?

- **Marginalization** is using a joint distribution $P(X_1, ..., X_m, ... X_n)$ to compute a distribution over a smaller number of variables $P(X_1, ..., X_m)$
 - Smaller distribution is called the marginal distribution of its variables
- We compute the marginal distribution by summing out the other variables:

$$P(X, Y) = \sum_{z \in dom(Z)} P(X, Y, Z = z)$$

Weather	Temperature	P
clear	mild	0.20
clear	cold	0.30
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
snowing	very cold	0.10

Conditional Probability

- Agents need to be able to update their beliefs based on new observations
- This process is called conditioning
- We write $P(h \mid e)$ to denote "probability of **hypothesis** h given that we have observed **evidence** e"
 - $P(h \mid e)$ is the probability of h conditional on e

Semantics of Conditional Probability

- Evidence e lets us rule out all of the worlds that are incompatible with e
 - E.g., if I observe that the weather is clear, I should no longer assign **any** probability to the worlds in which it is snowing
 - We need to normalize the probabilities of the remaining worlds to ensure that the probabilities of possible worlds sum to 1

$$P(\omega \mid e) = \begin{cases} e & \text{of } P(\omega) \text{ of } \omega \neq e, \\ 0 & \text{otherwise.} \end{cases}$$

Conditional Probability Example

My initial marginal belief about the weather was:

$$P(Weather = snow) = 0.25$$

- Suppose I observe that the temperature is mild.
 - Question: What should I now believe about the weather?
- 1. Rule out incompatible worlds
- 2. Normalize remaining probabilities

Weather		P
clear	.20 / (.20 + .05) = 0.8	
snowing	.05 / (.20 + .05) = 0.2	
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
-snowing	very cold	0.10

Chain Rule

Definition: conditional probability

$$P(h \mid e) = \frac{P(h, e)}{P(e)}$$

We can run this in reverse to get

$$P(h, e) = P(h \mid e) \times P(e)$$

Definition: chain rule

$$P(\alpha_1, ..., \alpha_n) = P(\alpha_1) \times P(\alpha_2 \mid \alpha_1) \times \cdots \times P(\alpha_n \mid \alpha_1, ..., \alpha_{n-1})$$
$$= \prod_{i=1}^n P(\alpha_i \mid \alpha_1, ..., \alpha_{i-1})$$

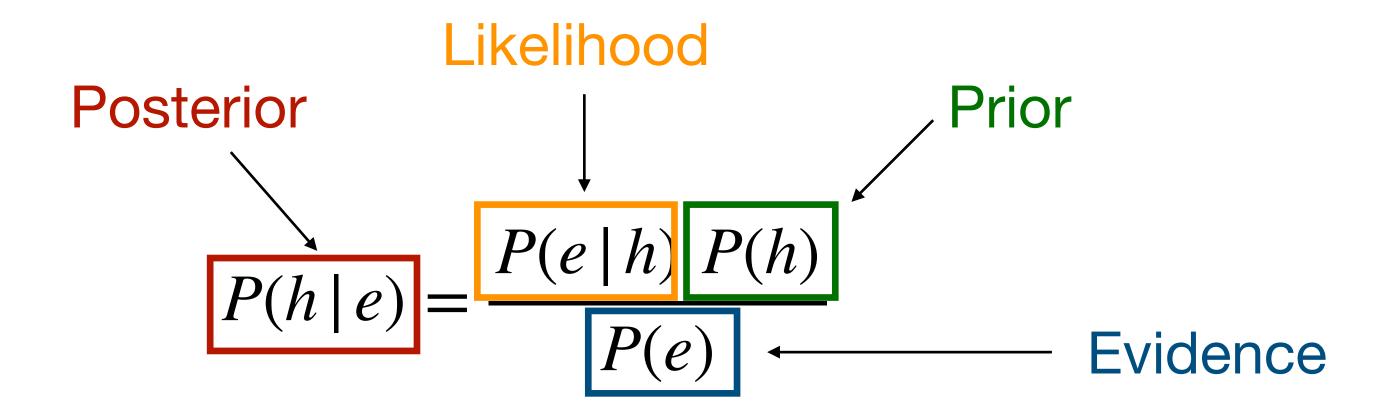
Bayes' Rule

• From the chain rule, we have

$$P(h, e) = P(h \mid e)P(e)$$
$$= P(e \mid h)P(h)$$

• Often, $P(e \mid h)$ is easier to compute than $P(h \mid e)$.

Bayes' Rule:



Expected Value

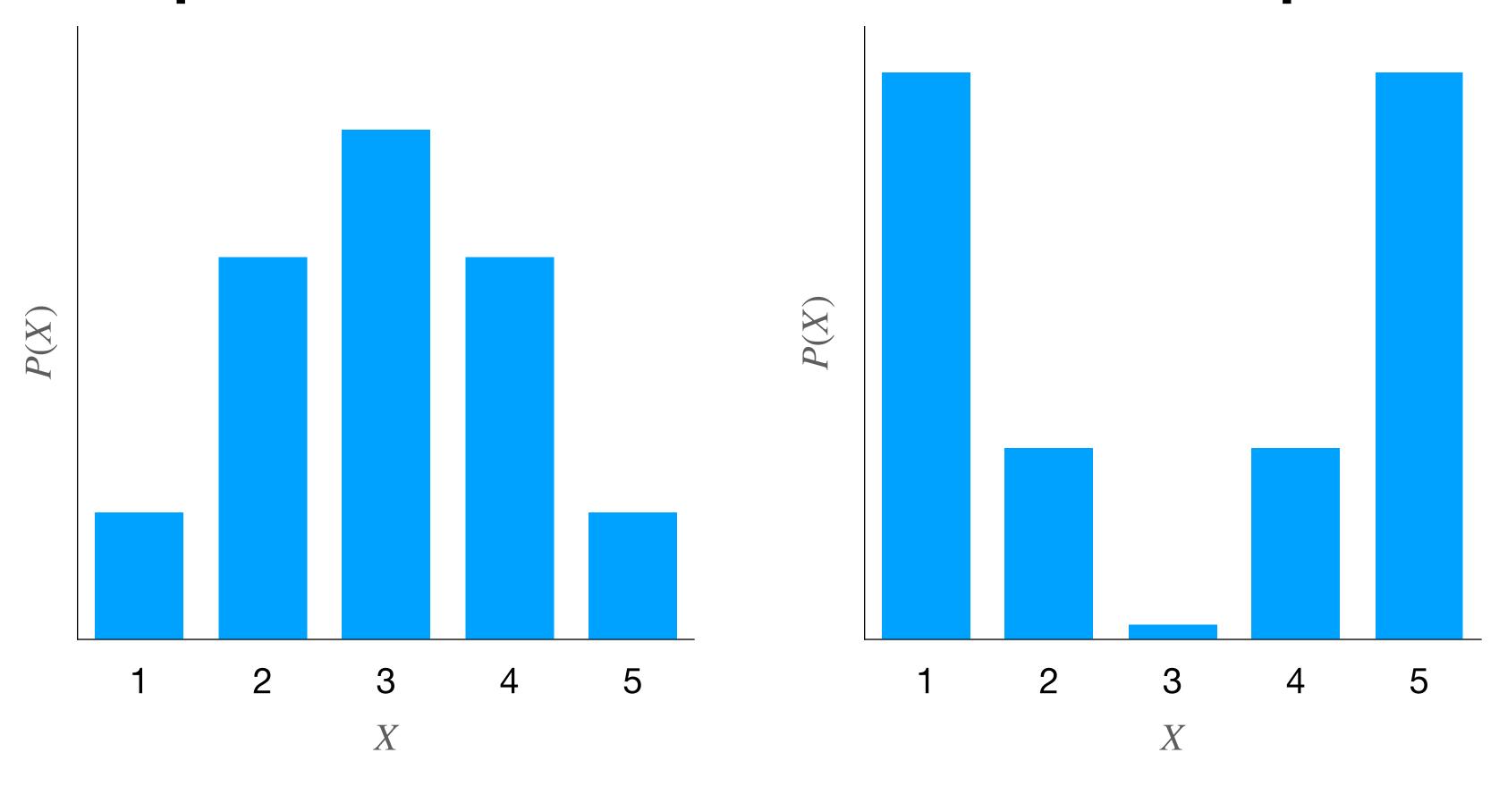
• The **expected value** of a **function** f on a random variable is the weighted average of that function over the domain of the random variable, **weighted** by the **probability** of each value:

$$\mathbb{E}\left[f(X)\right] = \sum_{x \in dom(X)} P(X = x) f(x)$$

• The conditional expected value of a function f is the average value of the function over the domain, weighted by the conditional probability of each value:

$$\mathbb{E}\left[f(X) \mid Y = y\right] = \sum_{x \in dom(X)} P(X = x \mid Y = y) f(x)$$

Expected Value Examples



$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 10$$

$$\mathbb{E}[X] = 3$$

$$\mathbb{E}[X^2] \simeq 12$$

Summary

- Probability is a numerical measure of uncertainty
- Formal semantics:
 - Weights over possible worlds sum to 1
 - Probability of a proposition is total weight of possible worlds in which that proposition is true
- Conditional probability updates beliefs based on evidence
- Expected value of a function is its probability-weighted average over possible worlds