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Logistics & Assignment #1
• Midterm is March 15 (see eClass for other important dates) 

• Assignment #1 was released on Monday 
See eClass 

• Due February 8 at 11:55pm 

• Office hours have begun! 

• Not mandatory; for getting help from TAs 

• New Monday office hours: 6:00-7:00pm Mountain time 

• Python refreshers TODAY, Monday



Recap:  
Hill Climbing Problems

1. Foothills: Local maxima that are not global maxima 

2. Plateaus: Regions of the state space where the score is uninformative 

3. Ridges: Foothills that would not be foothills with a larger neighbourhood 

4. Ignorance of the global optimum: Unless we reach a satisfying 
assignment, we cannot be sure that an optimum returned by local search 
is the global optimum.
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Foothill

Plateau

Global 
optimum



Recap:  
Randomized Algorithms

• Adding random moves can fix some hill climbing problems 

• Two main kinds of random move: 

1. Random restart:  Start searching from a completely 
random new location 

2. Random step: Choose a random neighbour 

• Stochastic random search: Add both kinds of random 
moves to hill climbing



Recap: 
Stochastic Local Search

Input: a constraint satisfaction problem; a neighbours function; a score 
function to maximize; a stop_walk criterion; a random_step criterion 

current := random assignment of values to variables 
incumbent := current 
repeat 
    if incumbent is a satisfying assignment: 
        return incumbent 
    if stop_walk(): 
        current := new random assignment of values to variables 
    else if random_step(): 
        current := a random element from neighbours(current) 
    else: 
        current := n from neighbours(current) with maximum score(n) 
    if score(current) > score(incumbent): 
        incumbent := current



Two Examples
• Consider two partial algorithms: 

1. Hill climbing plus random restart 

2. Hill climbing plus random steps 

• Question: Which finds the maximum most easily 
on each of these two search spaces?  Why?



Simulated Annealing
• Idea: Start out by searching pretty randomly, but become more directed 

• Intuition: Move to a good neighbourhood quickly, then search intensively 
in that neighbourhood 

• Maintain a "temperature"  

• Choose new nodes more randomly at higher temperatures;  
Gradually decrease the temperature (according to a cooling schedule) 

• At each step: 
1. Randomly choose a neighbour  
2. Always accept (i.e., assign to ) if  

3. Else, accept with probability 

T

new
current score(new) > score(current)

e[(score(new)−score(current))/T]



Simulated Annealing cont.

• Small neighbourhoods are good, because they are easier to search 

• Large neighbourhoods are good, because they are more likely to contain 
an improvement 

• Simulated annealing allows for a large neighbourhood and efficient 
searching 

• You don't have to generate the whole neighbourhood, just randomly 
construct a single neighbour

e[(score(new)−score(current))/T]
• Worse  means lower acceptance probability 

• Always negative (why?)

score(new) • Higher T makes 
negative value smaller


• Higher acceptance 
probability 



Local Search Summary
• For some problems, we only care about finding a goal node, not the actions 

we took to find it 

• Local search: Look for goal states by iteratively moving from a current 
state to a neighbouring state 

• Hill climbing: Always move to the highest-score neighbour 

• Random step: Sometimes choose a random neighbour 

• Random restart: Sometimes start again from an entirely random state 

• Simulated annealing: Random moves start very random, become 
more greedy over time



Recap: Search
• Agent searches internal representation to find solution 

• Fully-observable, deterministic, offline, single-agent problems 

• Graph search finds a sequence of actions to a goal node 

• Efficiency gains from using heuristic functions to encode 
domain knowledge 

• Local search finds a goal node by repeatedly making small changes to the 
current state 

• Random steps and random restarts help handle local optima, 
completeness



Lecture Outline

1. Recap 

2. Uncertainty 

3. Probability Semantics 

4. Conditional Probability 

5. Expected Value



Uncertainty

• In search problems, agent has perfect knowledge of the world and its dynamics 

• In most applications, an agent cannot just make assumptions and then act 
according to those assumptions 

• Knowledge is uncertain: 

• Must consider multiple hypotheses 

• Must update beliefs about which hypotheses are likely given observations



Example: Wearing a Seatbelt
• An agent has to decide between three actions: 

1. Drive without wearing a seatbelt 

2. Drive while wearing a seatbelt 

3. Stay home 

• If the agent thinks that an accident will happen, it will just stay home 

• If the agent thinks that an accident will not happen, it will not bother to wear a 
seatbelt! 

• Wearing a seatbelt only makes sense because the agent is uncertain about 
whether driving will lead to an accident.



Measuring Uncertainty
• Probability is a way of measuring uncertainty 

• We assign a number between 0 and 1 to events (hypotheses): 

• 0 means absolutely certain that statement is false 

• 1 means absolutely certain that statement is true 

• Intermediate values mean more or less certain 

• Probability is a measurement of uncertainty, not truth 

• A statement with probability .75 is not "mostly true" 

• Rather, we believe it is more likely to be true than not



Subjective vs. Objective: 
The Frequentist Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Objective view is called frequentist: 

• The probability of an event is the proportion of times it would happen in the 
long run of repeated experiments 

• Every event has a single, true probability 

• Events that can only happen once don't have a well-defined probability



Subjective vs. Objective: 
The Bayesian Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Subjective view is called Bayesian: 

• The probability of an event is a measure of an agent's belief about its likelihood 

• Different agents can legitimately have different beliefs, so they can legitimately 
assign different probabilities to the same event 

• There is only one way to update those beliefs in response to new data 

• In this course, we will primarily take the Bayesian view



Example: Dice
• Diane rolls a fair, six-sided die, and gets the number  

• Question: What is ?  (the probability that Diane rolled a 5) 

• Diane truthfully tells Oliver that she rolled an odd number. 

• Question: What should Oliver believe  is? 

• Diane truthfully tells Greta that she rolled a number . 

• Question: What should Greta believe  is? 

• Question: What is ?

X

P(X = 5)

P(X = 5)

≥ 5

P(X = 5)

P(X = 5)



Semantics: 
Possible Worlds

• Random variables take values from a domain.  
We will write them as uppercase letters (e.g., , etc.) 

• A possible world is a complete assignment of values to variables 
We will usually write a single "world" as  and the set of all possible worlds as  

• A probability measure is a function  over possible worlds ω 
satisfying: 

1.   

2.   

X, Y, D

ω Ω

P : Ω → ℝ

∑
ω∈Ω

P(ω) = 1

P(ω) ≥ 0 ∀ω ∈ Ω



Propositions
• A primitive proposition is an equality or inequality expression 

E.g.,  or  

• A proposition is built up from other propositions using logical connectives.   
E.g.,  

• The probability of a proposition is the sum of the probabilities of the possible worlds in which that 
proposition is true: 

   

• Therefore: 

X = 5 X ≥ 4

(X = 1 ∨ X = 3 ∨ X = 5)

P(α) = ∑
ω:ω⊧α

P(ω)

P(α ∨ β) ≥ P(α)
P(α ∧ β) ≤ P(α)

P(¬α) = 1 − P(α)

         means "𝛼 is true in ω"ω ⊧ α

𝛼∨β means "𝛼 OR β"

𝛼∧β means "𝛼 AND β"

¬𝛼 means "NOT 𝛼"



Joint Distributions

• In our dice example, there was a single random variable 

• We typically want to think about the interactions of multiple random variables 

• A joint distribution assigns a probability to each full assignment of values to 
variables 

• e.g., . Equivalent to  

• Can view this as another way of specifying a single possible world

P(X = 1,Y = 5) P(X − 1 ∧ Y = 5)



Joint Distribution Example

• What might a day be like in Edmonton?  
Random variables: 

• Weather,  
with domain {clear, snowing} 

• Temperature,  
with domain {mild, cold, very_cold} 

• Joint distribution  
P(Weather, Temperature):

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10



Weather P

clear 0.75

snowing 0.25

Marginalization
• Marginalization is using a joint distribution 

 to compute a 
distribution over a smaller number of 
variables  

• Smaller distribution is called the 
marginal distribution of its variables 

• We compute the marginal distribution by 
summing out the other variables: 

P(X1, …, Xm, …Xn)

P(X1, …, Xm)

P(X, Y) = ∑
z∈dom(Z)

P(X, Y, Z = z)

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10

Question: 

What is the marginal 
distribution of 
Weather?



Conditional Probability

• Agents need to be able to update their beliefs based on new observations 

• This process is called conditioning 

• We write  to denote "probability of hypothesis  given that we have 
observed evidence " 

•  is the probability of  conditional on 

P(h ∣ e) h
e

P(h ∣ e) h e



P(ω ∣ e) = {
1

P(e) × P(ω) if ω ⊧ e,

0 otherwise.

Semantics of  
Conditional Probability

• Evidence  lets us rule out all of the worlds that are incompatible with  

• E.g., if I observe that the weather is clear, I should no longer assign any 
probability to the worlds in which it is snowing 

• We need to normalize the probabilities of the remaining worlds to ensure that 
the probabilities of possible worlds sum to 1

e e

P(ω ∣ e) = {c × P(ω) if ω ⊧ e,
0 otherwise.



Conditional Probability Example
• My initial marginal belief about the 

weather was:  
 

• Suppose I observe that the 
temperature is mild. 

• Question: What should I now 
believe about the weather? 

1. Rule out incompatible worlds 

2. Normalize remaining probabilities

P(Weather = snow) = 0.25

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10

Weather P

clear .20 / (.20 + .05) = 0.8

snowing .05 / (.20 + .05) = 0.2



Chain Rule
Definition: conditional probability 

  

• We can run this in reverse to get 

  

Definition: chain rule 

 

P(h ∣ e) =
P(h, e)
P(e)

P(h, e) = P(h ∣ e) × P(e)

P(α1, …, αn) = P(α1) × P(α2 ∣ α1) × ⋯ × P(αn ∣ α1, …, αn−1)
= Πn

i=1P(αi ∣ α1, …, αi−1)



Bayes' Rule

• From the chain rule, we have 

 

• Often,  is easier to compute than . 

Bayes' Rule: 

P(h, e) = P(h ∣ e)P(e)
= P(e ∣ h)P(h)

P(e ∣ h) P(h ∣ e)

P(h |e) =
P(e |h) P(h)

P(e)

Posterior
Likelihood

Prior

Evidence



Expected Value
• The expected value of a function  on a random variable is the weighted 

average of that function over the domain of the random variable, weighted by 
the probability of each value: 

  

• The conditional expected value of a function  is the average value of the 
function over the domain, weighted by the conditional probability of each value: 

 

f

𝔼 [f(X)] = ∑
x∈dom(X)

P(X = x)f(x)

f

𝔼 [f(X) ∣ Y = y] = ∑
x∈dom(X)

P(X = x ∣ Y = y)f(x)



Expected Value Examples

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Summary
• Probability is a numerical measure of uncertainty 

• Formal semantics: 

• Weights over possible worlds sum to 1 

• Probability of a proposition is total weight of possible worlds in which  
that proposition is true 

• Conditional probability updates beliefs based on evidence 

• Expected value of a function is its probability-weighted average over 
possible worlds


