| ocal Search

CMPUT 366: Intelligent Systems

| ogistics & Assignment #1

 Midterm is March 15 (see eClass for other important dates)

 Assignment #1 was released Monday
See eClass

* Due February 8 at 11:55pm

» (Office hours have begun!

 Not mandatory; for getting help from TAs

* New Monday office hours: 6:00-7:00pm Mountain time

* Python refreshers Friday, Monday

Recap

 Graph search problems are an extremely general encoding for
choosing a sequence of actions from a start state to a goal state

* Using heuristic functions can speed this process up
 A* search is optimal but space-intensive

 Branch & bound depth-first search is optimal and space
efficient, but needs a good starting bound

e Varying the direction of search can exploit mismatches in forward
and reverse branching factors

| ecture Outline

1. Recap & Logistics
2. Local Search

3. Hill Climbing

4, Randomized Algorithms

Searching for Goal Nodes

Sometimes, we know how to recognize a goal node, but not how to
construct one.

Example (SAT problem): Given a Boolean formula,

s there an assignment of truth values to the variables X; that makes
the formula true”

e State Is the values of the different variables

 Easy to recognize when we've succeeded, but computing a
"satisfying assignment” is NP-complete in general

 SAT is an example of a constraint satisfaction problem

Searching for Goal Nodes

We can encode SAT as a graph search problem (assignments
as states, variable value changes as actions), but:

1. The space is too big to explore exhaustively

 Question: How many states are there in a SAT problem
with k variables?

e |ndustrial SAT problems routinely have hundreds of
thousands of variables

2. We don't care about the sequence of actions

* Once we have a satisfying assignment, we are done

| ocal Search

* ldea: start from a random assignment, and then search around in
the space of possible assignments

* Need not keep track of the sequence of moves that we took
e [ntuitively:

1. Select an assignment of a value to each variable

2. Repeat:
() Select a variable to change
(i) Select a new value for that variable

3. until a satisfying assignment is found

| ocal Search Problem

Definition: Local Search Problem

* A constraint satisfaction problem: A set of variables, domains
for the variables, and constraints on their joint assignment.

» Neighbours function: neighbours(n)
 Maps from a node n to a set of "similar® nodes Questions:

 Score function: score(n) 1. What are the nodes?

* Evaluates the "quality” of an assignment 2. What are the
goal nodes”?

Nelghbournoods

In previous graph search problems, the successor function represents
states that can be reached from a given state by taking some actual action

* |n local search problems, the neighbours function is a design decision

* We choose actions that will help us efficiently explore the space rather
than trying to represent actual actions

Usually the neighbourhood is states that differ in small ways from the
current state (variable assignment)

« E.g.: Assignments that differ in k different variables, possibly by a
small amount

Question: What might be a good neighbourhood function for SAT?

Heuristics vs. Scores

* Previously, the heuristic was optional, for iImproving efficiency

* |n local search problems, the score function is required

* [he state space is too big to exhaustively explore, so
uninformed search is not an option

 Sometimes we don't even have a goal, we just want to
maximize the quality of the state

e Exa

Of Vi

1]

O

P
a

e SCOores: n

ted constra

umber of unsatisfied clauses (in SAT); number

ints (in CSP)

(Generic Local Search

Algorithm

Input: a constraint satisfaction problem; ajneighbours tunction;
alscore function to maximize;|ajstop_walk criterion

current := random assignment of values to variables

iIncumbent = current

repeat
If ncumbent Is a satistying assignment:

return /ncumbent

if stop_walk():
current := new random assignment of values to variables

else:

select a current from neighbours(current)
if score(current) > score(incumbent):
iIncumbent := current
until termination

Hill Climbing

* ldea: Select the neighbour with the highest score
* Thisis called an improving step
* [f no iImproving steps available, halt and return incumbent

e We'll move toward the best solution once we are close
enough

* This algorithm is called hill climbing:
* [t seeks the highest point on the scoring function's graph

* [t moves only uphill (i.e., it makes only improving steps)

Hill Climbing Algorithm

Input: a constraint satisfaction problem; a neighbours function; a score function

current := random assignment of values to variables
Incumbent = current

repeat
If ncumbent is a satistying assignment: Questions:
return incumbent
if False: 1. Is hill climbing
current := new random assignment of values to variables complete?
else:

2. Is hill climbing

current := n from neighbours(current) with maximum score(h)
optimal?

If score(current) > score(incumbent):
iIncumbent = current

else:
return 'ncumbent

until termination

>~ W

Hill Climbing Problems

Foothills: Local maxima that are not global maxima

Plateaus: Regions of the state space where the score is uninformative

Ridges: Foothills that would not be foothills with a larger neighbourhood

Ignorance of the global optimum: Unless we reach a satisfying
assignment, we cannot be sure that an optimum returned by local search
s the global optimum.

Global

;
optimum Foothill

Plateau

Ranadomized Algorithms

* Adding random moves can fix some hill climbing problems

e [wo main kinds of random move:

1. Random restart: Start searching from a completely
random new location

2. Random step: Choose a random neighbour

e Stochastic random search: Add both kinds of random
moves to hill climbing

Stochastic Local Search

Input: a constraint satisfaction problem; a neighbours function; a score
function to maximize; a stop_walk criterion; a random_step criterion

current ;= random assignment of values to variables Questions:
Incumbent .= current |
repeat 1. s stochastic
if incumbent is a satisfying assignment: local search
return incumbent complete?
if stop_walk(): (Why?)
cw_'rent = new random assignment of values to variables 5 s stochastic
else If random_step|): | iocal search
current := a random element from neighbours(current) optimal?
else: Why?)

current := n from neighbours(current) with maximum score(n)
if score(current) > score(incumbent):
iIncumbent := current

Iwo Examples

* (Consider two partial algorithms:
1. Hill climbing plus random restart
2. Hill climbing plus random steps

* Question: Which finds the maximum most easily
on each of these two search spaces”? Why?

Simulated Annealing

Idea: Start out by searching pretty randomly, but become more directed

* Intuition: Move to a good neighbournhood quickly, then search intensively
in that neighbourhood

Maintain a "temperature” 7

Choose new nodes more randomly at higher temperatures;
Gradually decrease the temperature (according to a cooling schedule)

At each step:

1. Randomly choose a neighbour new

2. Always accept (i.e., assign to current) if score(new) > score(current)
|(score(new)—score(current))/T]

3. Else, accept with probability €

Summary

e For some problems, we only care about finding a goal node, not the actions
we took to find it

 Local search: Look for goal states by iteratively moving from a current
state to a neighbouring state

* Hill climbing: Always move to the highest-score neighbour
 Random step: Sometimes choose a random neighbour
 Random restart: Sometimes start again from an entirely random state

 Simulated annealing: Random moves start very random, become
more greedy over time

