
Branch & Bound

CMPUT 366: Intelligent Systems 
 

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search



Logistics
• Assignment #1 released  

• Available on eClass 

• Due: Monday February 8, 2021 

• TA office hours discussion 

• Some students have expressed preference for later times 

• Depends on TA availability



Recap: Heuristics
Definition: 
A heuristic function is a function  that returns a non-negative estimate 
of the cost of the cheapest path from n to a goal node. 

• e.g., Euclidean distance instead of travelled distance 

Definition: 
A heuristic function is admissible if  is always less than or equal to the 
cost of the cheapest path from  to a goal node. 

• i.e.,  is a lower bound on  for any goal node 
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Recap: A* Search
• A* search uses both path cost information and heuristic information to 

select paths from the frontier 

• Let  

•  estimates the total cost to the nearest goal node starting from  

• A* removes paths from the frontier with smallest  

• When  is admissible,  
 is a solution, and 

 is a prefix of : 

•  

f(p) = cost(p) + h(p)
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Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node} 
while frontier is not empty: 
    select -minimizing path <n1, n2, ..., nk> from frontier 
    remove <n1, n2, ..., nk> from frontier 
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk: 
        add <n1, n2, ..., nk, n> to frontier 
end while

f

i.e., f(<n1, n2, ..., nk>) ≤ f(p) 
for all other paths p ∈ frontier



Recap: A* Theorem
Theorem: 
If there is a solution, A* using heuristic function  always returns an optimal solution (in 
finite time), if 

1. The branching factor is finite, 

2. All arc costs are greater than some , and 

3.  is an admissible heuristic. 

Proof: 

1. The optimal solution is guaranteed to be removed from the frontier eventually 

2. No suboptimal solution will be removed from the frontier whenever the frontier 
contains a prefix of the optimal solution 
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Lecture Outline

1. Recap & Logistics 

2. Cycle Pruning 

3. Branch & Bound 

4. Exploiting Search Direction



Cycle Pruning

• Even on finite graphs, depth-first search may not be 
complete, because it can get trapped in a cycle. 

• A search algorithm can prune any path that ends in a node 
already on the path without missing an optimal solution 
(Why?)

Questions: 

1. Is depth-first search on 
with cycle pruning 
complete for finite 
graphs? 

2. What is the time 
complexity for cycle 
checking in depth-first 
search? 

3. What is the time 
complexity for cycle 
checking in breadth-first 
search?



Cycle Pruning 
Depth First Search

Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node} 
while frontier is not empty: 
    select the newest path <n1, n2, ..., nk> from frontier 
    remove <n1, n2, ..., nk> from frontier 
    if nk ≠ nj for all 1 ≤ j < k: 
        if goal(nk): 
            return <n1, n2, ..., nk> 
        for each neighbour n of nk: 
            add <n1, n2, ..., nk, n> to frontier 
end while



Heuristic Depth First Search
Depth First Breadth First Iterative 

Deepening
Space  

complexity O(mb) O(bm) O(mb)

Complete? Finite graphs 
only Complete Complete

Heuristic 
Depth First A*  Branch & 

Bound

Space  
complexity O(mb) O(bm) O(mb)

Heuristic 
Usage Limited Optimal

Optimal 
(if bound low 

enough)

Optimal? No Yes
Yes


(if bound high 
enough)



Branch & Bound
• The  function provides a path-specific lower bound on solution cost 

starting from  

• Idea: Maintain a global upper bound on solution cost also 

• Then prune any path whose lower bound exceeds the upper bound 

• Question: Where does the upper bound come from? 

• Cheapest solution found so far 

• Before solutions found, specified on entry 

• Can increase the global upper bound iteratively  
(as in iterative deepening search)

f(p)
p



Branch & Bound Algorithm
Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound0 

frontier := { <s> | s is a start node} 
bound := bound0 
best := ∅ 
while frontier is not empty: 
    select the newest path <n1, n2, ..., nk> from frontier 
    remove <n1, n2, ..., nk> from frontier 
    if cost(<n1, n2, ..., nk>) + h(nk) ≤ bound: 
        if goal(nk): 
            bound := cost(<n1, n2, ..., nk>) 
            best := <n1, n2, ..., nk> 
        else: 
            for each neighbour n of nk: 
                add <n1, n2, ..., nk, n> to frontier 
end while 
return best



Branch & Bound Analysis
• If bound0 is set to just above the optimal cost, branch & bound will explore no more 

paths than A* 
(Why?) 

• With iterative increasing of bound0, will re-explore some lower-cost paths, but still 
similar time-complexity to A* 

Question: How much should the bound get increased by? 

• Iteratively increase bound to the lowest-f-value node that was pruned 

• Worse than A* by no more than a linear factor of m,  
by the same argument as for iterative deepening search 

• Choosing next -limit is an active area of researchf



Exploiting Search Direction
• When we care about finding the path to a known goal 

node, we can search forward, but we can often search 
backward 

• Given a search graph G=(N,A), known goal node g, and 
set of start nodes S, can construct a reverse search 
problem G=(N, Ar): 

1. Designate g as the start node 

2. Ar = { <n2,n1> | <n1,n2> ∈ A } 

3. goalr(n) = True if n ∈ S 
(i.e., if n is a start node of the original problem)

Questions: 

1. When is this useful? 

2. When is this infeasible?



Reverse Search
Definitions: 

1. Forward branch factor: Maximum number of outgoing neighbours 
Notation: b 

• Time complexity of forward search:   

2. Reverse branch factor: Maximum number of incoming neighbours 
Notation: r 

• Time complexity of reverse search:  

When the reverse branch factor is smaller than the forward branch 
factor, reverse search is more time-efficient.

O(bm)

O(rm)



Bidirectional Search
• Idea: Search backward from from goal and forward from 

start simultaneously 

• Time complexity is exponential in path length, so 
exploring half the path length is an exponential 
improvement 

• Even though must explore half the path length twice 

• Main problems: 

• Ensuring that the frontiers meet 

• Checking that the frontiers have met

Questions: 

What bidirectional 
combinations of search 
algorithm make sense? 

• Breadth first + 
Breadth first? 

• Depth first +  
Depth first? 

• Breadth first +  
Depth first?



Summary
• A* considers both path cost and heuristic cost when selecting paths: 

  

• Admissible heuristics guarantee that A* will be optimal 

• Admissible heuristics can be built from relaxations of the original 
problem 

• The more accurate the heuristic is, the fewer the paths A* will explore 

• Branch & bound combines the optimality guarantee and heuristic 
efficiency of A* with the space efficiency of depth-first search 

• Tweaking the direction of search can yield efficiency gains 

f(p) = cost(p) + h(p)


