or, How I Learned to Stop Worrying and Love Depth First Search

CMPUT 366: Intelligent Systems

Branch & Bound

P&M §3.7-3.8

Logistics

Assignment #1 released

- Available on eClass
- Due: Monday February 8, 2021
- TA office hours discussion

 - Depends on TA availability

Some students have expressed preference for later times

Definition:

of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:

cost of the cheapest path from *n* to a goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Recap: Heuristics

A heuristic function is a function h(n) that returns a non-negative estimate

A heuristic function is **admissible** if h(n) is always less than or equal to the

- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When h is **admissible**, $p^* = \langle s, \dots, n, \dots, g \rangle$ is a **solution**, and $p = \langle s, ..., n \rangle$ is a **prefix** of p^* :
 - $f(p) \leq \operatorname{cost}(p^*)$

Recap: A* Search

Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node} while frontier is not empty: select f-minimizing path < $n_1, n_2, ..., n_k$ > from frontier remove < $n_1, n_2, ..., n_k$ > from frontier if goal(n_k): return < $n_1, n_2, ..., n_k$ > for each neighbour n of n_k : add < $n_1, n_2, ..., n_k$, n> to frontier end while

ode} i.e., $f(\langle n_1, n_2, ..., n_k \rangle) \leq f(p)$ for all other paths $p \in frontier$

Recap: A* Theorem

Theorem:

If there is a solution, A^{*} using heuristic function h always returns an **optimal** solution (in finite time), if

- 1. The branching factor is **finite**,
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. *h* is an **admissible** heuristic.

Proof:

- contains a prefix of the optimal solution

The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier

Lecture Outline

- 1. Recap & Logistics
- 2. Cycle Pruning
- 3. Branch & Bound
- 4. Exploiting Search Direction

- Even on **finite graphs**, depth-first search may not be complete, because it can get trapped in a cycle.
- A search algorithm can prune any path that ends in a node already on the path without missing an optimal solution (**Why?**)

Cycle Pruning

Questions:

- Is depth-first search on with cycle pruning **complete** for finite graphs?
- 2. What is the **time complexity** for cycle checking in **depth-first** search?
- What is the **time** 3. **complexity** for cycle checking in **breadth-first** search?

Cycle Pruning Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := $\{ \langle s \rangle | s \}$ is a start node $\}$ while *frontier* is not empty: select the newest path $< n_1, n_2, ..., n_k >$ from frontier **remove** <*n*₁, *n*₂, ..., *n_k*> from *frontier* if $n_k \neq n_j$ for all $1 \leq j < k$: if $goal(n_k)$: **return** <*n*₁, *n*₂, ..., *n*_k> for each neighbour *n* of n_k : **add** <*n*₁, *n*₂, ..., *n_k*, *n*> to frontier end while

Heuristic Depth First Search

Heuristic Depth First

Space complexity	O(mb)
Heuristic Usage	Limited

Optimal? No

A*	Branch & Bound
O(b ^m)	O(mb)
Optimal	Optimal (if bound low enough)
Yes	Yes (if bound high enough)

- The f(p) function provides a **path-specific lower bound** on solution cost starting from *p*
- Idea: Maintain a global upper bound on solution cost also
 - Then prune any path whose lower bound exceeds the upper bound
- **Question:** Where does the upper bound come from?
 - Cheapest solution found so far
 - Before solutions found, specified on entry \bullet
 - Can increase the global upper bound iteratively \bullet (as in iterative deepening search)

Branch & Bound

Branch & Bound Algorithm

Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound₀

frontier := $\{ \langle s \rangle | s \text{ is a start node} \}$ bound := $bound_0$ best := Ø while *frontier* is not empty: **select** the newest path $< n_1, n_2, ..., n_k >$ from *frontier* **remove** <*n*₁, *n*₂, ..., *n_k*> from *frontier* if $cost(< n_1, n_2, ..., n_k >) + h(n_k) \le bound$: if $goal(n_k)$: bound := $cost(< n_1, n_2, ..., n_k >)$ best := <n₁, n₂, ..., n_k> else: for each neighbour *n* of n_k : **add** <*n*₁, *n*₂, ..., *n_k*, *n*> to frontier end while return best

Branch & Bound Analysis

- If *bound*₀ is set to just above the optimal cost, branch & bound will explore no more paths than A* (**Why?**)
- With iterative increasing of bound₀, will re-explore some lower-cost paths, but still similar time-complexity to A*

Question: How much should the bound get increased by?

- Iteratively increase bound to the **lowest-f-value** node that was **pruned**
- Worse than A* by no more than a linear factor of m, by the same argument as for iterative deepening search
- Choosing next *f*-limit is an active area of research

Exploiting Search Direction

- When we care about finding the path to a known goal node, we can search forward, but we can often search backward
- Given a search graph G=(N,A), known goal node g, and set of start nodes S, can construct a **reverse search problem** $G=(N, A^r)$:
 - Designate g as the start node

2.
$$A^r = \{ < n_2, n_1 > | < n_1, n_2 > \}$$

3. $goal^{r}(n) = True \text{ if } n \in S$ (i.e., if *n* is a start node of the original problem)

 $\in A$

Questions:

- When is this **useful**?
- 2. When is this **infeasible**?

Reverse Search

Definitions:

- Forward branch factor: Max Notation: b
 - Time complexity of forward search: $O(b^m)$
- 2. Reverse branch factor: Maximum number of incoming neighbours Notation: r
 - Time complexity of reverse search: $O(r^m)$

When the reverse branch factor is **smaller** than the forward branch factor, reverse search is more **time-efficient**.

1. Forward branch factor: Maximum number of outgoing neighbours

Bidirectional Search

- Idea: Search backward from from goal and forward from start **simultaneously**
- Time complexity is **exponential in path length**, so exploring half the path length is an exponential improvement
 - Even though must explore half the path length twice
- Main problems:
 - **Ensuring** that the frontiers meet \bullet
 - Checking that the frontiers have met

Questions:

What bidirectional **combinations** of search algorithm make sense?

- Breadth first + Breadth first?
- Depth first + Depth first?
- Breadth first + Depth first?

Summary

A* considers both path cost and heuristic cost when selecting paths:

- Admissible heuristics guarantee that A* will be optimal
- Admissible heuristics can be built from relaxations of the original problem
- The more **accurate** the heuristic is, the **fewer** the paths A* will explore
- Branch & bound combines the optimality guarantee and heuristic efficiency of A* with the space efficiency of depth-first search
- Tweaking the direction of search can yield efficiency gains

 $f(p) = \cot(p) + h(p)$