Uninformed Search Part 2 & Heuristic Search

CMPUT 366: Intelligent Systems

P&M §3.6

Logistics

- TA office hours begin this week
 - See eClass page for times and meeting links
- Assignment #1 released next week

Lecture Outline

- 1. Logistics
- 2. Iterative Deepening Search
- 3. Least Cost First Search
- 4. Heuristics
- 5. A* Search
- 6. Comparing Heuristics

Recap: Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞:

Perform **depth-first search** to a maximum depth *max_depth* **end for**

Iterative Deepening Search

Input: a *graph*; a set of *start nodes*; a *goal* function

```
more_nodes := True
while more_nodes:
   frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
   for max_depth from 1 to ∞:
      more_nodes := False
      while frontier is not empty:
         select the newest path \langle n_1, n_2, ..., n_k \rangle from frontier
         remove \langle n_1, n_2, ..., n_k \rangle from frontier
         if goal(n_k):
            return < n_1, n_2, ..., n_k >
         if k < max_depth:
            for each neighbour n of n_k:
               add \langle n_1, n_2, ..., n_k, n \rangle to frontier
         else if n_k has neighbours:
            more_nodes := True
```

Iterative Deepening Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is iterative deepening search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

Bonus: Time Complexity of Iterated Deepening Search

- Breadth-first search requires $O(b^m)$ time, because in the worst case it visits every path once
- Iterative deepening search is worse, because it visits every path at least once, and many paths multiple times.
 But how much worse?

Claim: Iterated deepening search has time complexity no worse than $O(mb^m)$ (i.e., m times worse than breadth first search)

- 1. Paths of length 1 are visited m times; paths of length 2 are visited m-1 times; ...; paths of length m are visited 1 time.
- 2. In other words, every path is visited m times or fewer

Note: This is a very **loose bound**. See the text for a much tighter bound.

When to Use Iterative Deepening Search

- When is iterative deepening search appropriate?
 - Memory is limited, and
 - Both deep and shallow solutions may exist
 - or we prefer shallow ones
 - Tree may contain infinite paths

Optimality

Definition:

An algorithm is **optimal** if it is guaranteed to return an optimal (i.e., **minimal-cost**) solution **first**.

Question: Which of the three algorithms presented so far is optimal? Why?

Least Cost First Search

- None of the algorithms described so far is guided by arc costs
 - BFS and IDS are implicitly guided by path length, which can be the same for uniform-cost arcs
- They return a path to a goal node as soon as they happen to blunder across one, but it may not be the optimal one
- Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search

return $< n_1, n_2, ..., n_k >$

for each neighbour n of n_k :

end while

add $\langle n_1, n_2, ..., n_k, n \rangle$ to frontier

```
Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}

while frontier is not empty:

select the cheapest path < n_1, n_2, ..., n_k >  from frontier

remove < n_1, n_2, ..., n_k >  from frontier

if goal(n_k):
```

Question:

What data structure for the frontier implements this search strategy?

Least Cost First Search Analysis

- Least Cost First Search is **complete** and **optimal** if there is $\varepsilon > 0$ with $\cos(\langle n_1, n_2 \rangle) > \varepsilon$ for every arc $\langle n_1, n_2 \rangle$:
 - 1. Suppose $\langle n_1, n_2, ..., n_k \rangle$ is the optimal solution
 - 2. Suppose that p is any non-optimal solution So, $cost(p) > \langle n_1, n_2, ..., n_k \rangle$
 - 3. For every $1 \le \ell \le k$, $cost(\langle n_1, n_2, ..., n_\ell \rangle) < cost(p)$
 - 4. So p will never be removed from the frontier before $\langle n_1, n_2, ..., n_k \rangle$
- What is the worst-case space complexity of Least Cost First Search?
 [A: O(m)] [B: O(mb)] [C: O(b^m)] [D: it depends]
- When does Least Cost First Search have to expand every node of the graph?

Uninformed Search Summary

- Different search strategies have different properties and behaviour
 - Depth first search is space-efficient but not always complete or time-efficient
 - Breadth first search is complete and always finds the shortest path to a goal, but is not space-efficient
 - Iterative deepening search can provide the benefits of both, at the expense of some time-efficiency
 - All three strategies must potentially expand every node, and are not guaranteed to return an optimal solution
- Least cost first is essentially breadth-first search with an optimality guarantee

Recap: Search Strategies

	Depth First	Breadth First	Iterative Deepening	Least Cost First
Selection	Newest	Oldest	Newest, multiple	Cheapest
Data structure	Stack	Queue	Stack, counter	Priority queue
Complete?	Finite graphs only	Complete	Complete	Complete if $cost(p) > \varepsilon$
Space complexity	O(mb)	O(bm)	O(mb)	O(b ^m)
Time complexity	O(b ^m)	O(b ^m)	O(mbm) **	O(b ^m)
Optimal?	No	No	No	Optimal

Domain Knowledge

- Domain-specific knowledge can help speed up search by identifying promising directions to explore
- We will encode this knowledge in a function called a heuristic function which estimates the cost to get from a node to a goal node
- The search algorithms in this lecture take account of this heuristic knowledge when **selecting** a path from the frontier

Heuristic Function

Definition:

A heuristic function is a function h(n) that returns a non-negative estimate of the cost of the cheapest path from n to a goal node.

- For paths: $h(\langle n_1, n_2, ..., n_k \rangle) = h(n_k)$
- Uses only **readily-available** information about a node (i.e., easy to compute)
- Problem-specific

Admissible Heuristic

Definition:

A heuristic function is **admissible** if h(n) is **always less than or equal** to the cost of the cheapest path from n to any goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Example Heuristics

- Euclidean distance for DeliveryBot (ignores that it can't go through walls)
- Number of dirty rooms for VacuumBot (ignores the need to move between rooms)
- Points for chess pieces (ignores positional strength)

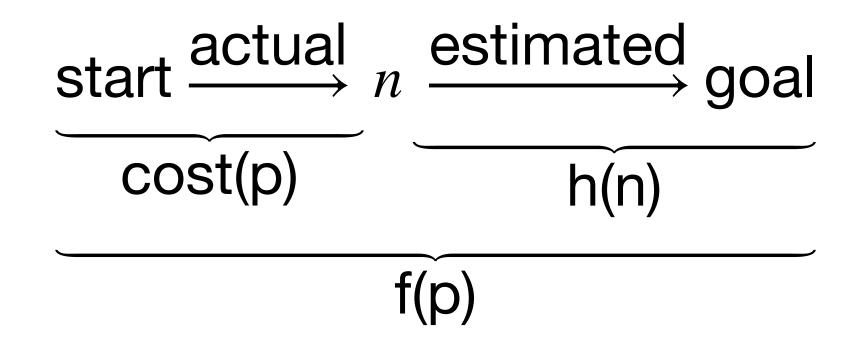
Constructing Admissible Heuristics

- Search problems try to find a cost-minimizing path, subject to constraints encoded in the search graph
- How to construct an easier problem? Drop some constraints.
 - This is called a relaxation of the original problem
- The cost of the optimal solution to the relaxation will always be an admissible heuristic for the original problem (Why?)
- Neat trick: If you have two admissible heuristics h_1 and h_2 , then $h_3(n)=\max\{h_1(n),h_2(n)\}$ is admissible too! (Why?)

Simple Uses of Heuristics

- Heuristic depth first search: Add neighbours to the fringe in decreasing order of their heuristic values, then run depth first search as usual
 - Will explore most promising successors first, but
 - Still explores all paths through a successor before considering other successors
 - Not complete, not optimal
- Greedy best first search: Select path from the frontier with the lowest heuristic value
 - Not guaranteed to work any better than breadth first search (why?)

A* Search



- A* search uses both path cost information and heuristic information to select paths from the frontier
- Let f(p) = cost(p) + h(p)
- A* removes paths from the frontier with smallest f(p)
- When h is admissible, $p^* = \langle s, ..., n, ..., g \rangle$ is a solution, and $p = \langle s, ..., n \rangle$ is a prefix of p^* :
 - $f(p) \leq \cot(p^*)$
 - Why?

A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

end while

```
frontier := { \langle s \rangle \mid s is a start node} i.e., f(\langle n_1, n_2, ..., n_k \rangle) \leq f(p) for all other paths p \in frontier while frontier is not empty:

select heuristic minimizing path \langle n_1, n_2, ..., n_k \rangle from frontier remove \langle n_1, n_2, ..., n_k \rangle from frontier if goal(n_k):

return \langle n_1, n_2, ..., n_k \rangle Question:

Question:

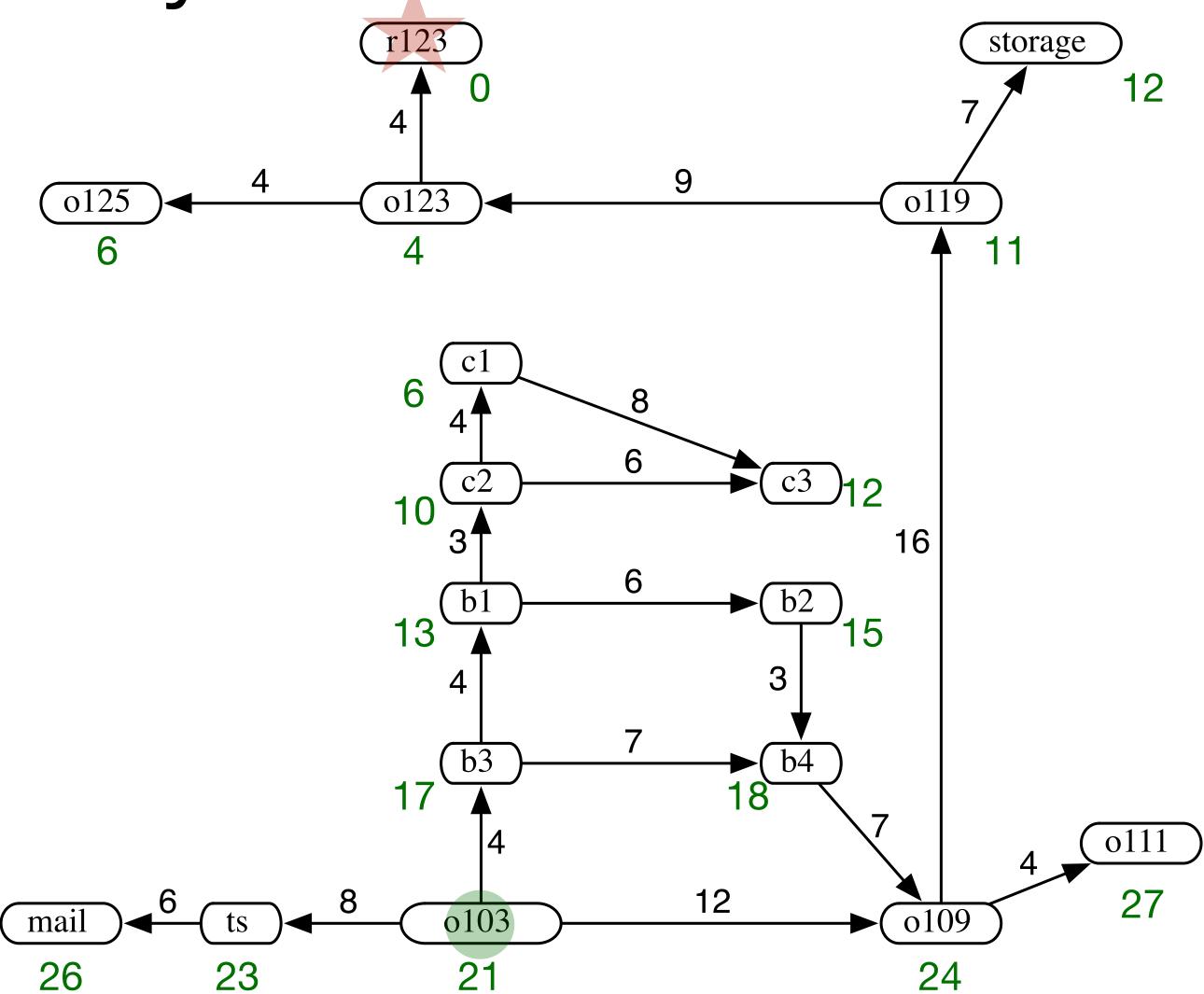
Question:

What data structure for the
```

What data structure for the frontier implements this search strategy?

A* Search Example: DeliveryBot

- Heuristic: Euclidean distance
- Question: What is f(b3)? f(109)?
- A* will spend a bit of time exploring paths in the labs before trying to go around via o109
- At that point the heuristic starts helping more
- Question: Does breadth-first search explore paths in the lab too?
- Question: Does breadth-first search explore any paths that A* does not?



A* Theorem

Theorem:

If there is a solution, A^* using heuristic function h always returns an **optimal** solution (in **finite time**), if

- 1. The branching factor is finite,
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. h is an admissible heuristic.

A* Theorem: Completeness

Proof part 1: A* is complete

- Since arc costs are larger than ϵ , every path in the frontier will eventually have cost larger than k, for any finite k
- So every path in the frontier will eventually have cost larger than the cost of the optimal solution
- So the optimal solution will eventually be removed from the frontier

A* Theorem: Optimality

Proof part 2: Optimality

• If path g is a **solution**, then f(g) is equal to cost(g) (Why?)

i.e.,
$$p = \langle s, n_1, \ldots, n_k \rangle$$
,
$$p^* = \langle s, n_1, \ldots, n_k, n_{k+1}, \ldots, z \rangle$$
, and p^* is optimal

- If a path p leads to an optimal solution, and path g is any solution, then $f(p) \le f(g)$ (Why?)
- So no sub-optimal solution will be removed from the frontier while a path that leads to an optimal solution is on the frontier.

Comparing Heuristics

- Suppose that we have two admissible heuristics, h_1 and h_2
- Suppose that for every node n, $h_2(n) \ge h_1(n)$

Question: Which heuristic is better for search?

Dominating Heuristics

Definition:

A heuristic h_2 dominates a heuristic h_1 if

- 1. $\forall n : h_2(n) \ge h_1(n)$, and
- 2. $\exists n : h_2(n) > h_1(n)$.

Theorem:

If h_2 dominates h_1 , and both heuristics are admissible, then A* using h_2 will never remove more paths from the frontier than A* using h_1 .

Question:

Which admissible heuristic dominates all other admissible heuristics?

A* Analysis

For a search graph with *finite* maximum branch factor *b* and *finite* maximum path length *m...*

- 1. What is the worst-case **space complexity** of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. What is the worst-case time complexity of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

Question: If A* has the same space and time complexity as least cost first search, then what is its advantage?

Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- A* considers both path cost and heuristic cost when selecting paths: f(p) = cost(p) + h(p)
- Admissible heuristics guarantee that A* will be optimal
- Admissible heuristics can be built from relaxations of the original problem
- The more accurate the heuristic is, the fewer the paths A* will explore