Policy Gradient

CMPUT 366: Intelligent Systems

S&B §13.0-13.3

Lecture Overview

- 1. Recap
- 2. Parameterized Policies
- 3. Policy Gradient Theorem
- 4. REINFORCE Algorithm

Recap: Parameterized Value Functions

• A parameterized value function's values are set by setting the values of a weight vector $\mathbf{w} \in \mathbb{R}^d$:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

- \hat{v} could be a linear function: w is the feature weights
- \hat{v} could be a **neural network**: **w** is the weights, biases, kernels, etc.
- Many fewer weights than states: $d \ll |\mathcal{S}|$
 - Changing one weight changes the estimated value of many states
 - Updating a single state generalizes to affect many other states' values

Recap: Stochastic Gradient Descent

• Stochastic Gradient Descent: After each example $(S_t, v_{\pi}(S_t))$, adjust weights a tiny bit in direction that would most reduce error on that example:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_{t}) - \hat{v}(S_{t}, \mathbf{w}_{t}) \right]^{2}$$

$$= \mathbf{w}_{t} + \alpha \left[v_{\pi}(S_{t}) - \hat{v}(S_{t}, \mathbf{w}_{t}) \right] \nabla \hat{v}(s, \mathbf{w}_{t})$$
error

• We don't know $v_{\pi}(S_t)$, so we update toward an approximate target U_t :

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(s, \mathbf{w}_t)$$

Approaches to Control

- 1. Action-value methods (all previous approaches)
 - Learn the value of each action in each state: $q_{\pi}(s, a)$
 - . Pick the max-value action (usually): $\arg\max q_\pi(s,a)$
- 2. Function approximation (last lecture)
 - Prediction: Learn the parameters w of state-value function $\hat{v}(s, \mathbf{w})$
 - Control: Learn the parameters w of action-value function $\hat{q}(s, \mathbf{w})$
- 3. Policy-gradient methods (today)
 - Learn the **parameters** θ of a policy $\pi(a \mid s, \theta)$
 - Update by gradient ascent in performance

Parameterized Policies

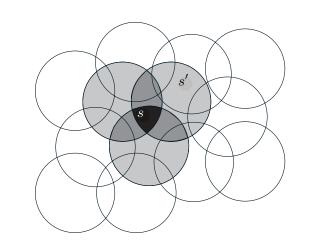
- The action probabilities of a parameterized policy $\pi(a \mid s, \theta)$ are set by setting the values of a parameter vector $\theta \in \mathbb{R}^{d'}$
- Common approach: softmax in action preferences
 - Learn an action preference function $h(s, a, \theta)$
 - Softmax over action preferences gives action probabilities:

$$\pi(a \mid s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_{a'} e^{h(s, a', \theta)}}$$

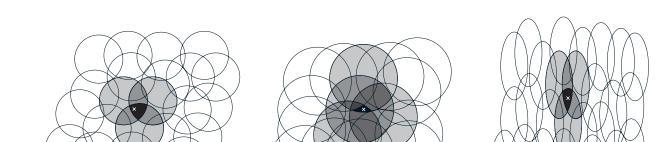
Action Preferences

- Question: What functional forms can we use for action preferences?
- Anything we could have used for \hat{v} :
 - Linear approximations:

$$h(s, a, \theta) \doteq \theta^T \mathbf{x}(s) = \sum_{i=1}^d \theta_i x_i(s)$$



- Including coarse coding, tile coding
- Neural network: θ are weights, offsets, kernels, etc.



Parameterized Policies Advantage: Deterministic Action

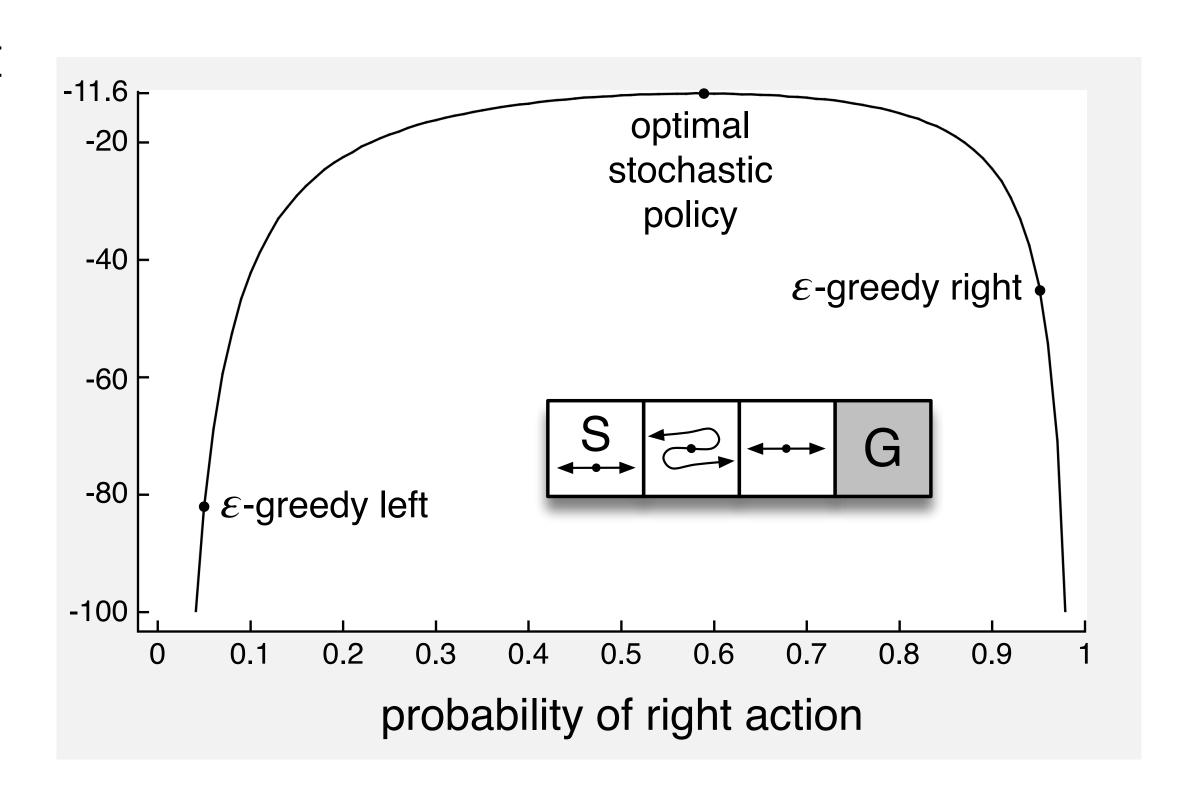
- . The optimal policy $\pi^*(a \mid s) = \arg\max_a q^*(s, a)$ is typically deterministic
- If we run an ε -soft policy, we cannot get to an optimal policy
 - Every action is played either with probability ε or $(1-\varepsilon)$
- Softmax in action preference policies can learn arbitrary probabilities, because $h(s, a, \theta)$ is completely unconstrained:

$$\pi(a \mid s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_{a'} e^{h(s, a', \theta)}}$$

- Question: How can a softmax in action preferences policy converge to a deterministic policy?
- Question: Can you get the same results with $h(s,a,\theta) = \hat{q}(s,a,\theta)$? (why?)

Example: Switcheroo Corridor

- Actions left and right have usual effect
- Except in one state they are reversed!
- Function approximation makes all the states look identical
- Optimal policy is stochastic, with Pr(right) ≈ 0.59
- But ε -greedy policies can only pick Pr(right) of ε or $(1-\varepsilon)!$



Parameterized Policies Advantage: Stochastic Actions

- Optimal policies are deterministic, but only when there is no state aggregation
- When function approximation makes states look the same, or when states are imperfectly observable, the optimal policy might be an arbitrary probability distribution
- Parameterized policies can represent arbitrary distributions
 - Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance

- We choose the policy parameters θ in order to maximize the **performance** of the policy: $J(\theta)$
- Question: What should $J(\theta)$ be in epsiodic cases?
- Expected returns to the policy specified by θ :

$$J(\theta) \doteq \mathbb{E}_{\pi_{\theta}} \left[G_0 \right]$$

• With special single starting state s_0 :

$$J(\theta) \doteq v_{\pi_{\theta}}(s_0)$$

Policy Gradient Ascent

- 1. Want to maximize performance: $J(\theta) = v_{\pi_{\theta}}(s_0)$
- 2. Gradient gives direction that **J** increases: $\nabla J(\theta)$
- 3. Update parameters in direction of the gradient:

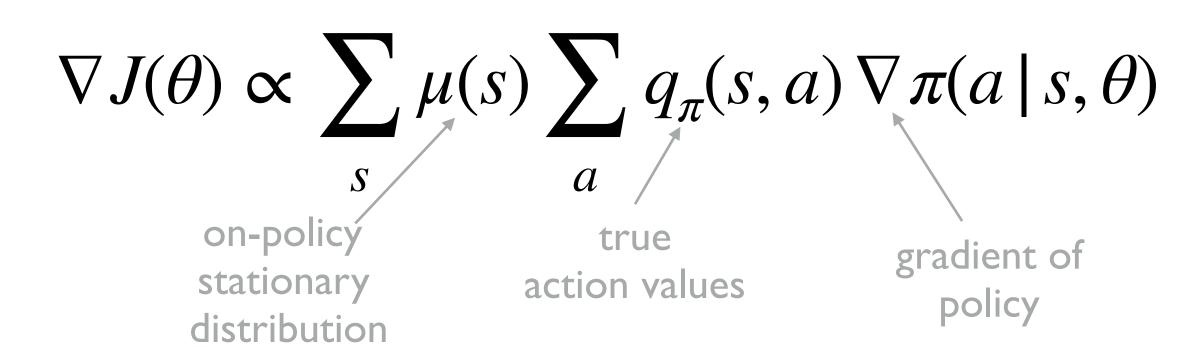
$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla J(\theta_t)$$

$$= \theta_t + \alpha \nabla v_{\pi_{\theta}} S_t$$

Policy Gradient Theorem

- The gradient of the policy $\nabla J(\theta)$ is just the gradient of the value function with respect to the policy $v_{\pi_{\theta}}(s_0)$
- But we don't know the gradient of the value function!

Policy Gradient Theorem:



Monte Carlo Policy Gradient

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a \mid s, \theta)$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a \mid S_{t}, \theta) \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a \mid S_{t}, \theta) \frac{\pi(a \mid S_{t}, \theta)}{\pi(a \mid S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} \pi(a \mid S_{t}, \theta) q_{\pi}(S_{t}, a) \frac{\nabla \pi(a \mid S_{t}, \theta)}{\pi(a \mid S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t} \mid S_{t}, \theta)}{\pi(A_{t} \mid S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[G_{t} \frac{\nabla \pi(A_{t} \mid S_{t}, \theta)}{\pi(A_{t} \mid S_{t}, \theta)} \right]$$

Monte Carlo Policy Gradient Algorithm: REINFORCE

REINFORCE Update:
$$\theta_{t+1} \leftarrow \theta_t + o G_t \frac{\nabla \pi(A_t | S_t, \theta_t)}{\pi(A_t | S_t, \theta_t)}$$

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

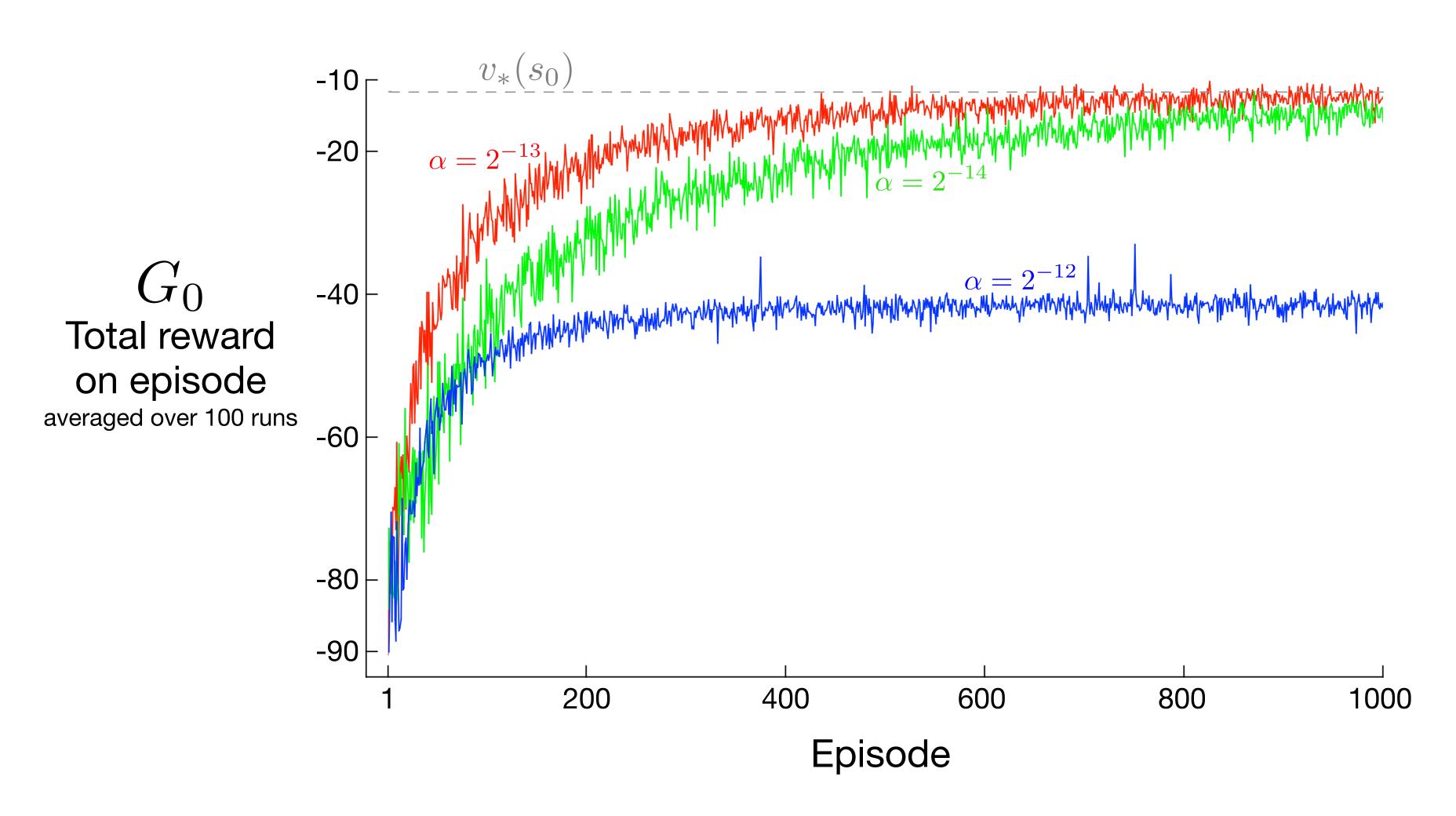
$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$$

$$(G_t)$$

$$\frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)}$$
 "eligibility function"
$$\left(\nabla \ln x = \frac{\nabla x}{x}\right)$$

REINFORCE Performance in Switcheroo Corridor



Summary

- All our previous control algorithms were action-value methods
 - 1. Approximate the action-value $q^*(s, a)$
 - 2. Choose maximal-value action at every state
- Policy gradient methods:
 - 1. Represent policies using parametric policy $\pi(s \mid a, \theta)$
 - 2. Directly optimize performance $J(\theta)$ by adjusting θ
- Policy Gradient Theorem lets us restate $J(\theta)$ in terms of quantities that we know ($\nabla\pi$) or can approximate (q_π)
- REINFORCE uses a particular estimation scheme for policy gradients