Policy Gradient

CMPUT 366: Intelligent Systems

. Recap

| ecture Overview

Parameterized Policies

> W

Policy Gradient Theorem

q

EINFO

RC

— Algorithm

Recap:
Parameterized Value Functions

A parameterized value function's values are set by setting the values of a
weight vector w € | d.

(s, W) = v ()
YV could be a linear function: w is the feature weights

Vv could be a neural network: w is the weights, biases, kernels, etc.

« Many fewer weights than states: d < | &’
* (Changing one weight changes the estimated value of many states

 Updating a single state generalizes to affect many other states' values

Recap:
Stochastic Gradient Descent

» Stochastic Gradient Descent: After each example (S,, v_(3,)), adjust

weights a tiny bit in direction that would most reduce error on that
example:

target
. 1 ‘/A 2
Wi = W, — EO‘V — (5, Wt)]
=w,+a [v,(S,) — (S, w)| VI(s, W)
\

error

+ We don't know v_(3,), so we update toward an approximate target U,

W < W+ a|U=5S,w)| Vi(s, w,)

Approaches to Control

1. Action-value methods (all previous approaches)

» Learn the value of each action in each state: g (s, a)

. Pick the max-value action (usually): arg max g (s, a)
a

2. Function approximation (last lecture)

» Prediction: Learn the parameters w of state-value function V(s, w)

 Control: Learn the parameters w of action-value function g(s, w)

3. Policy-gradient methods (today)

 Learn the parameters 6 of a policy z(a | s, &)

e Update by gradient ascent in performance

Parameterized Policlies

» The action probabilities of a parameterized policy 7(a | s, 0) are set by
setting the values of a parameter vector @ € R?

« Common approach: softmax in action preferences

 Learn an action preference function A(s, a, 0)

e Softmax over action preferences gives action probabillities:
eh(s,a,é’)

n(als,) = ——
(‘) Za/ eh(S,Cl/,H)

Action Preferences

 Question: \What functional forms can we use for action preferences”

 Anything we could have used for V:

* Linear approximations:

d
h(s,a,0) = 07x(s) =) Ox(s)
=1

* |ncluding coarse coding, tile coding

* Neural network: 0 are weights, offsets, kernels, etc.

Parameterized Policies Advantage:
Deterministic Action

The optimal policy 7*(a | s) = arg max g*(s, a) is typically deterministic
a

If we run an g-soft policy, we cannot get to an optimal policy

* Every action is played either with probability € or (1-&)

Softmax in action preference policies can learn arbitrary probabilities, because h(s, a, 0) is
completely unconstrained:

eh(s,a,é’)

n(als,) =
(‘) za, eh(S,Cl/,H)

Question: How can a softmax in action preferences policy converge to a deterministic policy”?

Question: Can you get the same results with h(s,a,0) =g(s,a,0)? (why?)

Example:
Switcheroo Corridor

Actions left and right have usual effect

-1_1£ opti;all
Except In one state they are reversed! stc;c(:)rlwiiitlc

-40 |
Function approximation makes all the e-greedy right
states look identical 60}

S [=|—| G

Optimal policy is stochastic, with 80| | greedy loft R
Pr(right) = 0.59 ‘

-100 f,

0 0.1 02 03 04 05 06 07 08 0.9 1

But £-greedy policies can only pick srobability of right action

Pr(right) of € or (1-&)!

(Image: Sutton & Barto, 2018)

Parameterized Policies Advantage:
Stochastic Actions

* Optimal policies are deterministic, but only when there is no state aggregation

* When function approximation makes states look the same, or when states are

Imperfectly observable, the optimal policy might be an arbitrary probability
distribution

* Parameterized policies can represent arbitrary distributions

* Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance

» \We choose the policy parameters @ in order to maximize the performance
of the policy: J(6)

» Question: \What should J(6) be in epsiodic cases?

* Expected returns to the policy specified by 0:

J(H) = — 1 [GO]

» With special single starting state s,

J() = v, (s0)

Policy Gradient Ascent

1. Want to maximize performance: J(0) = vﬂe(so)

2. Gradient gives direction that J increases: V J(0)

3. Update parameters in direction of the gradient:

0., <0 +aVJb)

— Ht + 04 St)

Policy Gradient Theorem

» The gradient of the policy VJ(0) is just the gradient of the value function
with respect to the policy vﬂe(so)

 But we don't know the gradient of the value function!

Policy Gradient Theorem:

VJ(0) Z u(s) Z q.(s,a)Vna(als,O)

Monte Carlo Policy Gradient

VJ(O) Z u(s) Z q.(s,a)Vr(als,O0)

= Er [2 (S @) V(al s, 6’)]
n(als,, 0)
r(als,, 0)

Vr(als, 0)
m(a | S, 0)

- |: 2 qn(Sp a)Vna(al AV 0)

— [Z n(a | St’ H)QE(SP a)

Vr(A S, 0)

- S, A
T qiz(t t) ﬂ(At‘St,e) :|

G V(A lS, 0)
t ﬂ(Al‘ ‘ Sta 9)

Monte Carlo Policy Gradient
Algorithm: REINFORCE

Vr(A,|S, o)

REINFORCE Update: 0,, | < 6, + dG,

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for r,

Input: a differentiable policy parameterization mw(als, 0)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,57_1, Ar_1, R, following n(-|-, 0)
Loop for each step of the episode t =0,1,...,7 — 1:
G — Sjtlf—t—l—l ’Yk_t_le
0+ 0+ ay'GVInn(A:S, 0)

Vﬂ'(Atlsp 9) " | bl f] " <V1 V.X)
eligiDlllt unction nx = —m—
A]S,0) e

Go

Total reward
on episode

averaged over 100 runs

10~

20
_40 |-

" (I
-60 i [N

-80

-90—I

REINFORCE Performance
N Switcheroo Corridor

o = 2717

| | | | |
200 400 600 800 1000
Episode

(Image: Sutton & Barto, 2018)

Summary

All our previous control algorithms were action-value methods

1. Approximate the action-value g*(s, a)

2. Choose maximal-value action at every state

Policy gradient methods:

1. Represent policies using parametric policy z(s | a, 0)

2. Directly optimize performance J(€) by adjusting &

Policy Gradient Theorem lets us restate J(6) in terms of quantities that
we know (V mr) or can approximate (q,)

REINFORCE uses a particular estimation scheme for policy gradients

