lemporal Difference Learning

CMPUT 366: Intelligent Systems

| ecture Overview

1. Recap
2. 1D Prediction

3. On-Policy TD Control (Sarsa)

4. Off-Policy TD Control (Q-Learning)

Recap: Monte Carlo RL

Monte Carlo estimation: Estimate expected returns to a state or action by
averaging actual returns over sampled trajectories

Estimating action values requires either exploring starts or a soft policy
(e.q., £-greedy)

Off-policy learning is the estimation of value functions for a target policy
based on episodes generated by a different behaviour policy

Off-policy control is learning the optimal policy (target policy) using
episodes from a behaviour policy

|_earning from Experience

Suppose we are playing a blackjack-like game in person, but we don't
know the rules.

 We know the actions we can take, we can see the cards, and we get
told when we win or lose

Question: Could we compute an optimal policy using
dynamic programming in this scenario?

Question: Could we compute an optimal policy using Monte Carlo?

* \What would be the pros and cons of running Monte Carlo®

Bootstrapping

Bootstrapping bootstrapping
Learns from
experience M C

Requires full
dynamics D P

* Dynamic programming bootstraps: Each iteration's estimates are based
partly on estimates from previous iterations

* Each Monte Carlo estimate is based only on actual returns

Upaates

Dynamic Programming: V(S) <) x(a|S)) p(s’,r| S, a)[r + yV(s")]

Monte Carlo: V(S,) « V(S,) + o [Gt — V(St)]

TDO): V(S,) < V(S) + a [Rq + ¥V(S,.1) — V(S)]

A)

U (S) ' :Gt ‘ S; = 3] Monte Carlo: Approximate because of I

= Er[Rip1 + Gy | Sp=5]

— AW:Rt—l—l =+ WUW(Sthl) | St :3] - Dynamic programming:
Approximate because v_ not known

TD(0): Approximate because of £ and v_ not known

TD(0) Algorithm

Tabular TD(0) for estimating v,

Input: the policy m to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A < action given by 7 for S

Take action A, observe R, S’

V(S) <+ V(S)+a|R+~V(S) —V(9)]
S+ 5

until S 1s terminal

Question: What information does this algorithm use”?

1D for Control

 We can plug ID prediction into the generalized policy iteration framework

 Monte Carlo control loop:
1. Generate an episode using estimated &

2. Update estimates of Q and 7

 On-policy TD control loop:

1. Take an action according to &

2. Update estimates of Q and 7

On-Policy TD Control

Sarsa (on-policy TD control) for estimating () = q¢.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize (s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from () (e.g., e-greedy)

Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S using policy derived from @) (e.g., e-greedy)
Q(S, 4) « Q(S. 4) + a[R+1Q(S', A') - Q(S, A)]
S+ S A+ A

until S 1s terminal

Question: \What information does this algorithm use?

Question: Will this estimate the Q-values of the optimal policy?

Actual Q-Values vs.
Optimal Q-Values

e Just as with on-policy Monte Carlo control, Sarsa does not converge to the
optimal policy, because it always chooses an £-greedy action

* And the estimated Q-values are with respect to the actual actions, which
are g-greedy

* Question: Why is it necessary to choose g-greedy actions”

 \What if we acted g-greedy, but learned the Q-values for the optimal policy”

Off-Policy TD Control

Q-learning (off-policy TD control) for estimating 7 ~ T,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode: I
Choose A from S using policy derived from @ (e.g., e-greedy)

Take action A, observe R, S’
Q(S,A) + Q(S,A) + a| R + ymax, Q(S',a) — Q(S, A)]
S« 5’ e © o

until S i1s terminal

Question: What information does this algorithm use”?

Question: \Why aren't we estimating the policy T explicitly?

Example: The Clift

y=1 (undiscounted)
R=-1

Safer path

Optimal path

S The Cliff G

Agent gets -1 reward until they reach the goal state

Step into the Cliff region, get reward -100 and go back to start

Question: How will Q-Learning estimate the value of state?

Question: How will Sarsa estimate the value of state?

Performance on The Cliff

Sarsa
D5 -
Sum of _50 -
rewards Q-learning
during
episode s
-100 I I | | I
0 100 200 300 400 500
Episodes

Q-Learning estimates optimal policy, but Sarsa consistently
outperforms Q-Learning. (why?)

Summary

Temporal Difference Learning bootstraps and learns from experience

* Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap
Prediction: TD(0) algorithm

Sarsa estimates action-values of actual £-greedy policy

Q-Learning estimates action-values of optimal policy while executing an
£-greedy policy

