Monte Carlo Prediction

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap

2. Policy lteration

3. Monte Carlo Prediction

Recap: In-Place lterative Policy evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)

Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, |lv —V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

* These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)

Recap: Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) > v (s) VseEJS.

f you are never worse off at any state by following z’ for one step and then

following 7 forever after, then following 7z’ forever has a higher expected value
at every state.

Recap: Pollcy teration

Ty — Uy —> T —> Vg, — Mg — +++ — Ty — Uy

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € S

2. Policy Evaluation
Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
V(s) < >y, p(8',r|s,m(s)) [r + vV ()]

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and m = m,; else go to 2

Example: Blackjack

Player gets two cards, dealer gets 1

Player can hit (get a new card) as many times as they like, or stick (stop
hitting)

After the player is done, the dealer hits / sticks according to a fixed rule
Whoever has the most points (sum of card values) wins

But, if you have more than 21 points, you lose immediately ("bust")

Simulating Blackjack

* (Given a policy for the player, it is very easy to simulate a game of Blackjack
* Question: Is it easy to compute the full dynamics?

* Question: Is it easy to run iterative policy evaluation?

EXperience vs. expectation

* |n order to compute expected updates, we need to know the exact
probability of every possible transition

e Often we don't have access to the full probability distribution, but we do
have access to samples of experience

1. Actual experience: \We want to learn based on interactions with a real
environment, without knowing its dynamics

2. Simulated experience: \We can simulate the dynamics, but we don't

have an explicit representation of transition probabillities, or there are
too many states

Monte Carlo Estimation

* Question: \What was Monte Carlo estimation the last time we studied it (in
Supervised Learning?)

* |nstead of estimating expectations by a weighted sum over
all possibilities, estimate expectation by averaging over a sample drawn
from the distribution:

n

1
- X] = Zf(x)x ~ ;in where x; ~ f

X =1

Monte Carlo Prediction

Use a large sample of episodes generated by a policy i to estimate the
state-values v_(s) for each state s

* We will consider only episodic tasks for now

Question: What is the return G, for state S, = s in a given episode?

We can estimate the expected return v_(s) = E[G, | S, = s] by averaging
the returns for that state in every episode containing a visit to s

First-visit Monte Carlo Prediction

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € S
Returns(s) < an empty list, for all s € S

Loop forever (for each episode):
(Generate an episode following w: So, Ao, R1,S51, A1, Ro, ..., S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =1—1,T—2,...,0:
G+ VvG + Ry
Unless S; appears in So, S1,...,5¢_1:
Append G to Returns(St)
V (St) < average(Returns(St))

Monte Carlo vs.
Dynamic Programming

Ilterative policy evaluation uses the estimates of the
next state's value to update the value of this state

a state's estimate

Monte Carlo estimate of each state's value is

e Only needs to compute a single transition to update I
!
Independent from estimates of other states' values :

 Needs the entire episode to compute an update I

 (Can focus on evaluating a subset of states if desired

Summary

Monte Carlo estimation estimates values by averaging returns over
sample episodes

* Does not require access to full model of dynamics

* Does require access to an entire episode for each sample

