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Labs & Assignment #3
• Assignment #3 is due Mar 24 (next Tuesday) at 11:59pm 

• Thursday's lab is from 5:00pm to 7:50pm on Google Meet 

• Link for meeting: https://meet.google.com/idf-kydp-pik 

• Not mandatory 

• Opportunity to get help from the TAs 

• mlp1 and cnn need to train and evaluate the specified models 

• train: fit parameters using provided training dataset 

• evaluate: compute loss on both provided test datasets

https://meet.google.com/idf-kydp-pik


Recap: Value Functions
State-value function 

  

Action-value function 

 

vπ(s) ≐ 𝔼π[Gt |St = s]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s]
qπ(s, a) ≐ 𝔼π[Gt |St = s, At = a]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s, At = a]



Recap: Bellman Equations
Value functions satisfy a recursive consistency condition called the Bellman equation: 

  

•  is the unique solution to 's (state-value) Bellman equation 

• There is also a Bellman equation for 's action-value function

vπ(s) ≐ 𝔼π[Gt |St = s]
= 𝔼π[Rt+1 + γGt+1 |St = s]

= ∑
a

π(a |s)∑
s′ �

∑
r

p(s′�, r |s, a)[r + γ𝔼π[Gt+1 |St+1 = s′ �]]

= ∑
a

π(a |s)∑
s′�,r

p(s′�, r |s, a)[r + γvπ(s′�)]

vπ π

π



Recap: GridWorld Example
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compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more
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Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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Reward dynamics
State-value function v𝜋 for 


random policy 
𝜋(a|s) = 0.25



GridWorld with Bounds Checking

What about a policy where we never try to go over an edge?
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for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

60 Chapter 3: Finite Markov Decision Processes

compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

Reward dynamics
State-value function v𝜋 for 


random policy 
𝜋(a|s) = 0.25

6.7 10.8 6.4 6.7 4.3

4.2 4.7 3.7 3.4 2.8

2.4 2.4 2.1 1.9 1.7

1.5 1.4 1.3 1.2 1.1

1.1 1.0 0.9 0.9 0.9

State-value function v𝜋B for 

bounded random policy 𝜋B



Optimality
• Question: What is an optimal policy? 

• A policy  is (weakly) better than a policy  if it is better for all  : 

.  

• An optimal policy  is weakly better than every other policy 

• All optimal policies share the same state-value function: (why?) 

  

• Also the same action-value function: 

 

π π′� s ∈ 𝒮

π ≥ π′ � ⟺ vπ(s) ≥ vπ′�(s) ∀s ∈ 𝒮

π*

v*(s) ≐ max
π

vπ(s)

q*(s, a) ≐ max
π

qπ(s, a)



Bellman Optimality Equations
•  must satisfy the Bellman equation too 

• In fact, it can be written in a special, policy-free way because we know that every 
state value is maximized by : 

 

v*

π*

v*(s) = max
a

qπ*
(s, a)

= max
a

𝔼π*
[Gt |St = s, At = a]

= max
a

𝔼π*
[Rt+1 + γGt+1 |St = s, At = a]

= max
a

𝔼[Rt+1 + γv*(St+1) |St = s, At = a]

= max
a ∑

s′�,r

p(s′�, r |s, a)[r + γv*(s′�)]



Bellman Optimality Equations

q*(s, a) = 𝔼 [Rt+1 + γ max
a′�

q*(St+1, a′�) St = s, At = a]
= ∑

s′ �,r

p(s′�, r |s, a)[r + γ max
a′ �

q*(s′�, a′�)]

v*(s) = max
a

𝔼[Rt+1 + γv*(St+1) |St = s, At = a]

= max
a ∑

s′�,r

p(s′ �, r |s, a)[r + γv*(s′�)]
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The backup diagrams in the figure below show graphically the spans of future states
and actions considered in the Bellman optimality equations for v⇤ and q⇤. These are the
same as the backup diagrams for v⇡ and q⇡ presented earlier except that arcs have been
added at the agent’s choice points to represent that the maximum over that choice is
taken rather than the expected value given some policy. The backup diagram on the left
graphically represents the Bellman optimality equation (3.19) and the backup diagram
on the right graphically represents (3.20).
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r
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Figure 3.4: Backup diagrams for v⇤ and q⇤

For finite MDPs, the Bellman optimality equation for v⇤ (3.19) has a unique solution.
The Bellman optimality equation is actually a system of equations, one for each state, so
if there are n states, then there are n equations in n unknowns. If the dynamics p of the
environment are known, then in principle one can solve this system of equations for v⇤
using any one of a variety of methods for solving systems of nonlinear equations. One
can solve a related set of equations for q⇤.

Once one has v⇤, it is relatively easy to determine an optimal policy. For each state
s, there will be one or more actions at which the maximum is obtained in the Bellman
optimality equation. Any policy that assigns nonzero probability only to these actions is
an optimal policy. You can think of this as a one-step search. If you have the optimal
value function, v⇤, then the actions that appear best after a one-step search will be optimal
actions. Another way of saying this is that any policy that is greedy with respect to the
optimal evaluation function v⇤ is an optimal policy. The term greedy is used in computer
science to describe any search or decision procedure that selects alternatives based only
on local or immediate considerations, without considering the possibility that such a
selection may prevent future access to even better alternatives. Consequently, it describes
policies that select actions based only on their short-term consequences. The beauty of v⇤
is that if one uses it to evaluate the short-term consequences of actions—specifically, the
one-step consequences—then a greedy policy is actually optimal in the long-term sense in
which we are interested because v⇤ already takes into account the reward consequences of
all possible future behavior. By means of v⇤, the optimal expected long-term return is
turned into a quantity that is locally and immediately available for each state. Hence, a
one-step-ahead search yields the long-term optimal actions.

Having q⇤ makes choosing optimal actions even easier. With q⇤, the agent does not
even have to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes q⇤(s, a). The action-value function e↵ectively caches the results of all
one-step-ahead searches. It provides the optimal expected long-term return as a value
that is locally and immediately available for each state–action pair. Hence, at the cost of
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all possible future behavior. By means of v⇤, the optimal expected long-term return is
turned into a quantity that is locally and immediately available for each state. Hence, a
one-step-ahead search yields the long-term optimal actions.

Having q⇤ makes choosing optimal actions even easier. With q⇤, the agent does not
even have to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes q⇤(s, a). The action-value function e↵ectively caches the results of all
one-step-ahead searches. It provides the optimal expected long-term return as a value
that is locally and immediately available for each state–action pair. Hence, at the cost of
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representing a function of state–action pairs, instead of just of states, the optimal action-
value function allows optimal actions to be selected without having to know anything
about possible successor states and their values, that is, without having to know anything
about the environment’s dynamics.

Example 3.8: Solving the Gridworld Suppose we solve the Bellman equation for v⇤
for the simple grid task introduced in Example 3.5 and shown again in Figure 3.5 (left).
Recall that state A is followed by a reward of +10 and transition to state A0, while state
B is followed by a reward of +5 and transition to state B0. Figure 3.5 (middle) shows the
optimal value function, and Figure 3.5 (right) shows the corresponding optimal policies.
Where there are multiple arrows in a cell, all of the corresponding actions are optimal.

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*Gridworld v⇤ ⇡⇤
Figure 3.5: Optimal solutions to the gridworld example.

Example 3.9: Bellman Optimality Equations for the Recycling Robot Using
(3.19), we can explicitly give the Bellman optimality equation for the recycling robot
example. To make things more compact, we abbreviate the states high and low, and the
actions search, wait, and recharge respectively by h, l, s, w, and re. Because there are
only two states, the Bellman optimality equation consists of two equations. The equation
for v⇤(h) can be written as follows:

v⇤(h) = max

⇢
p(h |h, s)[r(h, s, h) + �v⇤(h)] + p(l |h, s)[r(h, s, l) + �v⇤(l)],
p(h |h, w)[r(h, w, h) + �v⇤(h)] + p(l |h, w)[r(h, w, l) + �v⇤(l)]

�

= max

⇢
↵[rs + �v⇤(h)] + (1 � ↵)[rs + �v⇤(l)],
1[rw + �v⇤(h)] + 0[rw + �v⇤(l)]

�

= max

⇢
rs + �[↵v⇤(h) + (1 � ↵)v⇤(l)],
rw + �v⇤(h)

�
.

Following the same procedure for v⇤(l) yields the equation

v⇤(l) = max

8
<

:

�rs � 3(1 � �) + �[(1 � �)v⇤(h) + �v⇤(l)],
rw + �v⇤(l),
�v⇤(h)

9
=

; .

For any choice of rs, rw, ↵, �, and �, with 0  � < 1, 0  ↵, �  1, there is exactly
one pair of numbers, v⇤(h) and v⇤(l), that simultaneously satisfy these two nonlinear
equations.



Policy Evaluation

Question: How can we compute ? 

1. We know that  is the unique solution to the Bellman equations, so we 
could just solve them 

• but that is tedious and annoying and slow 

• Also requires a complete model of the dynamics 

2. Iterative policy evaluation  

• Takes advantage of the recursive formulation

vπ

vπ



Iterative Policy Evaluation
• Iterative policy evaluation uses the Bellman equation as an update rule: 

  

•  is a fixed point of this update, by definition 

• Furthermore, starting from an arbitrary , the sequence  will 
converge to  as 

vk+1(s) ≐ 𝔼π[Rt+1 + γvk(St+1 |St = s]

= ∑
a

π(a |s)∑
s′�,r

p(s′�, r |s, a)[r + γvk(s′ �)]

vπ

v0 {vk}
vπ k → ∞
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vk+1. There are several di↵erent kinds of expected updates, depending on whether a
state (as here) or a state–action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vk(s), and one
for the new values, vk+1(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v⇡; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and stops when it is su�ciently
small.

Iterative Policy Evaluation, for estimating V ⇡ v⇡

Input ⇡, the policy to be evaluated
Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
� 0
Loop for each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓

In-Place Iterative Policy Evaluation

• The updates are in-place: we use new values for  immediately instead 
of waiting for the current sweep to complete (why?) 

• These are expected updates: Based on a weighted average (expectation) 
of all possible next states (instead of what?)

V(s)
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compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more
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0.1 0.7 0.7 0.4 -0.4
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Actions
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Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

Reward dynamics
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compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more
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Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more
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Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more
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Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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Policy Improvement Theorem

Theorem:  
Let  and  be any pair of deterministic policies. 

If , 

then . 

If you are never worse off at any state by following  for one step and then 
following  forever after, then following  forever has a higher expected value 
at every state.

π π′�

qπ(s, π′ �(s)) ≥ vπ(s) ∀s ∈ 𝒮

vπ′�(s) ≥ vπ(s) ∀s ∈ 𝒮

π′�

π π′�



Policy Improvement Theorem Proof
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following the existing policy, ⇡. The value of this way of behaving is

q⇡(s, a)
.
= E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is greater—that
is, if it is better to select a once in s and thereafter follow ⇡ than it would be to follow
⇡ all the time—then one would expect it to be better still to select a every time s is
encountered, and that the new policy would in fact be a better one overall.

That this is true is a special case of a general result called the policy improvement
theorem. Let ⇡ and ⇡0 be any pair of deterministic policies such that, for all s 2 S,

q⇡(s, ⇡0(s)) � v⇡(s). (4.7)

Then the policy ⇡0 must be as good as, or better than, ⇡. That is, it must obtain greater
or equal expected return from all states s 2 S:

v⇡0(s) � v⇡(s). (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict
inequality of (4.8) at that state. This result applies in particular to the two policies
that we considered in the previous paragraph, an original deterministic policy, ⇡, and a
changed policy, ⇡0, that is identical to ⇡ except that ⇡0(s) = a 6= ⇡(s). Obviously, (4.7)
holds at all states other than s. Thus, if q⇡(s, a) > v⇡(s), then the changed policy is
indeed better than ⇡.

The idea behind the proof of the policy improvement theorem is easy to understand.
Starting from (4.7), we keep expanding the q⇡ side with (4.6) and reapplying (4.7) until
we get v⇡0(s):

v⇡(s)  q⇡(s, ⇡0(s))

= E[Rt+1 + �v⇡(St+1) | St =s, At =⇡0(s)] (by (4.6))

= E⇡0[Rt+1 + �v⇡(St+1) | St =s]

 E⇡0[Rt+1 + �q⇡(St+1, ⇡
0(St+1)) | St =s] (by (4.7))

= E⇡0[Rt+1 + �E⇡0[Rt+2 + �v⇡(St+2)|St+1, At+1 =⇡0(St+1)] | St =s]

= E⇡0
⇥
Rt+1 + �Rt+2 + �2v⇡(St+2)

�� St =s
⇤

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3v⇡(St+3)

�� St =s
⇤

...

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · ·

�� St =s
⇤

= v⇡0(s).

So far we have seen how, given a policy and its value function, we can easily evaluate
a change in the policy at a single state to a particular action. It is a natural extension



Greedy Policy Improvement
Given any policy , we can construct a new greedy policy  that is guaranteed to be 
at least as good: 

  

• If this new policy is not better than the old policy, then  for all  
(why?) 

• Also means that the new (and old) policies are optimal (why?)

π π′�

π′�(s) ≐ arg max
a

qπ(s, a)

= arg max
a

𝔼[Rt+1 + γvπ(ST+1) |St = s, At = a]

= arg max
a ∑

s′�,r

p(s′ �, r |s, a)[r + γvπ(s′�)] .

vπ(s) = vπ′ �(s) s ∈ 𝒮



Policy Iteration
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s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v  V (s)
V (s) 

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2
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a

P
s0,r p(s0, r |s, a)
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This is a lot of iterations!

Is it necessary to run to  
completion?



Value Iteration
Value iteration interleaves the estimation and improvement steps: 

 
vk+1(s) ≐ max

a
𝔼 [Rt+1 + γvk(St+1) |St = s, At = a]

= max
a ∑

s′�,r

p(s′ �, r |s, a)[r + γvk(s′�)]
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case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a

E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v⇤ under
the same conditions that guarantee the existence of v⇤.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v⇡ and v⇤.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v⇤. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating ⇡ ⇡ ⇡⇤

Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
| � 0
| Loop for each s 2 S:
| v  V (s)
| V (s) maxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

| � max(�, |v � V (s)|)
until � < ✓

Output a deterministic policy, ⇡ ⇡ ⇡⇤, such that
⇡(s) = argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

Value iteration e↵ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di↵erence between



Summary
• An optimal policy has higher state value than any other policy at every state 

• A policy's state-value function can be computed by iterating an expected 
update based on the Bellman equation 

• Given any policy , we can compute a greedy improvement  by choosing 
highest expected value action based on  

• Policy iteration: Repeat: 
    Greedy improvement using , then recompute  

• Value iteration: Repeat: 
     Recompute  by assuming greedy improvement at every update

π π′�

vπ

vπ vπ

vπ


