Optimality and Dynamic Programming

S&B §3.6, §4.0-4.4

CMPUT 366: Intelligent Systems

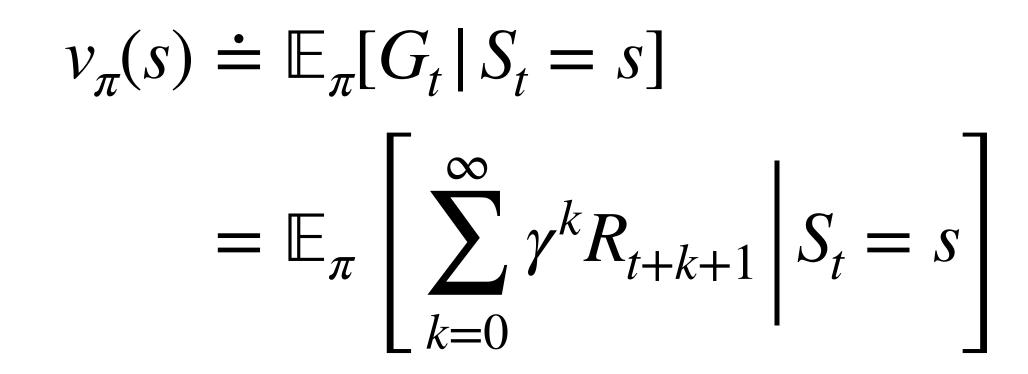
Lecture Outline

- 1. Assignment #3
- 2. Recap
- 3. Optimality
- 4. Policy Evaluation
- 5. Policy Improvement

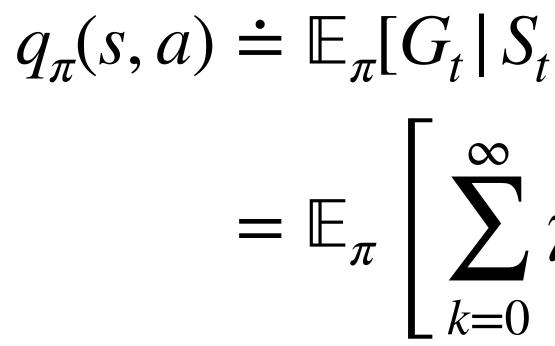
Labs & Assignment #3

- Assignment #3 is due Mar 24 (next Tuesday) at 11:59pm
- Thursday's lab is from **5:00pm to 7:50pm** on Google Meet
 - Link for meeting: <u>https://meet.google.com/idf-kydp-pik</u>
 - Not mandatory
 - Opportunity to get help from the TAs
- mlpl and cnn need to train and evaluate the specified models
 - train: fit parameters using provided training dataset
 - evaluate: compute loss on both provided test datasets

State-value function



Action-value function



Recap: Value Functions

$$\gamma^{k} = s, A_{t} = a]$$

$$\gamma^{k} R_{t+k+1} \left| S_{t} = s, A_{t} = a \right|$$

Recap: Bellman Equations

Value functions satisfy a **recursive consis** $v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$ $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t =$ $= \sum_{a} \pi(a | s) \sum_{s'} \sum_{r} p(s)$ $= \sum_{a} \pi(a | s) \sum_{s',r} p(s', r | s)$

- v_{π} is the unique solution to π 's (state-value) Bellman equation
- There is also a Bellman equation for π 's action-value function

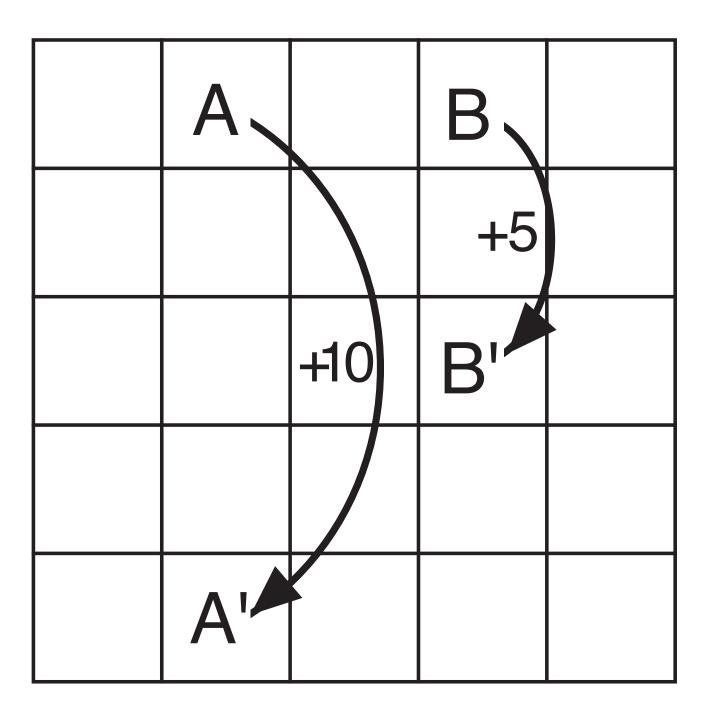
Value functions satisfy a recursive consistency condition called the Bellman equation:

$$= s]$$

$$s', r \mid s, a) \left[r + \gamma \mathbb{E}_{\pi} [G_{t+1} \mid S_{t+1} = s'] \right]$$

$$|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Recap: GridWorld Example



Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a|s) = 0.25$

What about a policy where we never try to go over an edge?

A		В	
		+5	
	+10	B'	
A'			

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Reward dynamics

State-value function v_{π} for random policy $\pi(a|s) = 0.25$

GridWorld with Bounds Checking

6.7	10.8	6.4	6.7	4.3
4.2	4.7	3.7	3.4	2.8
2.4	2.4	2.1	1.9	1.7
1.5	1.4	1.3	1.2	1.1
1.1	1.0	0.9	0.9	0.9

State-value function $V_{\Pi B}$ for **bounded** random policy π_B

Optimality

- **Question:** What is an **optimal** policy? \bullet
- A policy π is (weakly) **better** than a policy π' if it is better for all $s \in \mathcal{S}$:

$$\pi \geq \pi' \iff v_{\pi}$$

- An optimal policy π_* is weakly better than every other policy
- All optimal policies share the **same state-value function**: (**why?**)

 $\mathcal{V}_*(S) =$

• Also the same **action-value function**:

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

 $v(s) \ge v_{\pi'}(s) \quad \forall s \in \mathcal{S}.$

$$\stackrel{\star}{=} \max_{\pi} v_{\pi}(s)$$

Bellman Optimality Equations

- v_* must satisfy the Bellman equation too
- ulletstate value is **maximized** by π_* :

$$v_*(s) = \max_a q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*}[G_t]$$
$$= \max_a \mathbb{E}_{\pi_*}[R_{t+1}]$$
$$= \max_a \mathbb{E}[R_{t+1}]$$
$$= \max_a \sum_{s', r} p(s')$$

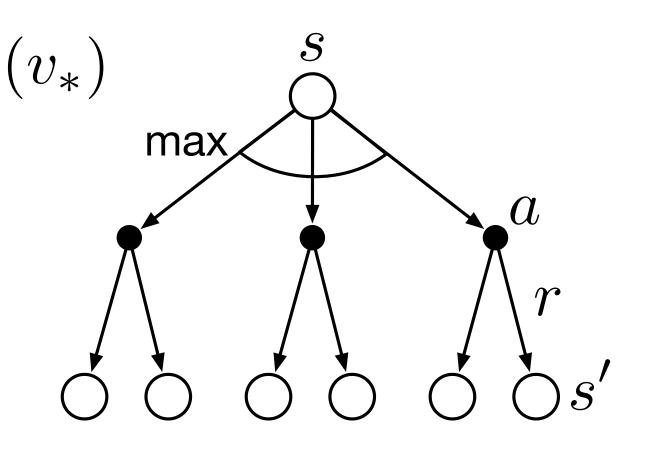
In fact, it can be written in a special, **policy-free** way because we know that every

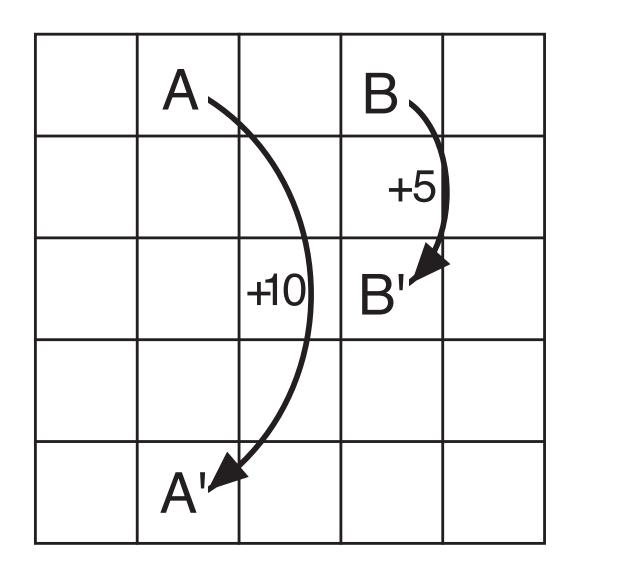
 $S_t = s, A_t = a$] $_{-1} + \gamma G_{t+1} | S_t = s, A_t = a]$ $+ \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$ ', $r | s, a \rangle [r + \gamma v_*(s')]$

Bellman Optimality Equations

$$\nu_*(s) = \max_a \mathbb{E}[R_{t+1} + \gamma \nu_*(S_{t+1}) | S]$$
$$= \max_a \sum_{s',r} p(s',r | s,a)[r+\gamma]$$

$$q_{*}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} (v_{*})(S_{t+1}, a') \middle| S_{t} = s, A_{t} = a\right] \xrightarrow{(q_{*})} s, a$$
$$= \sum_{s',r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_{*}(s', a')^{r}\right]_{s'} \xrightarrow{\max} s'$$

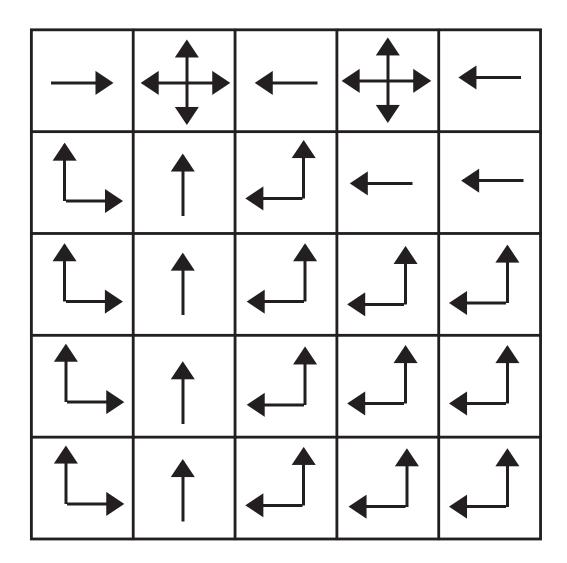




22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Gridworld

Optimal GridWorld



 U_*

 π_*

Policy Evaluation

Question: How can we compute v_{π} ?

- 1. We know that v_{π} is the unique solution to the Bellman equations, so we could just solve them
 - but that is tedious and annoying and slow
 - Also requires a complete model of the dynamics

Iterative policy evaluation 2.

Takes advantage of the recursive formulation

Iterative Policy Evaluation

- Iterative policy evaluation uses the Bellman equation as an update rule: $v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma]$ $=\sum \pi(a \mid s)$ \mathcal{A}
- v_{π} is a **fixed point** of this update, by definition
- Furthermore, starting from an **arbitrary** v_0 , the sequence $\{v_k\}$ will **converge** to v_{π} as $k \to \infty$

$$v_k(S_{t+1} | S_t = s]$$

$$\sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$$

In-Place Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop: $\Delta \leftarrow 0$ Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|)$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$

- \bullet of waiting for the current sweep to complete (**why?**)
- of all possible next states (instead of what?)

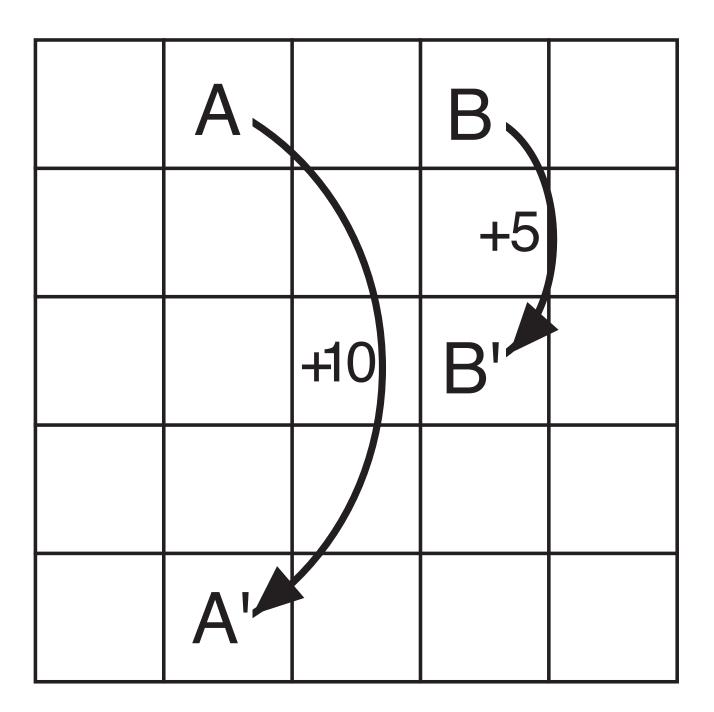
Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation

$$s,a) [r + \gamma V(s')]$$

The updates are in-place: we use new values for V(s) immediately instead

• These are **expected updates**: Based on a weighted average (expectation)

Iterative Policy Evaluation

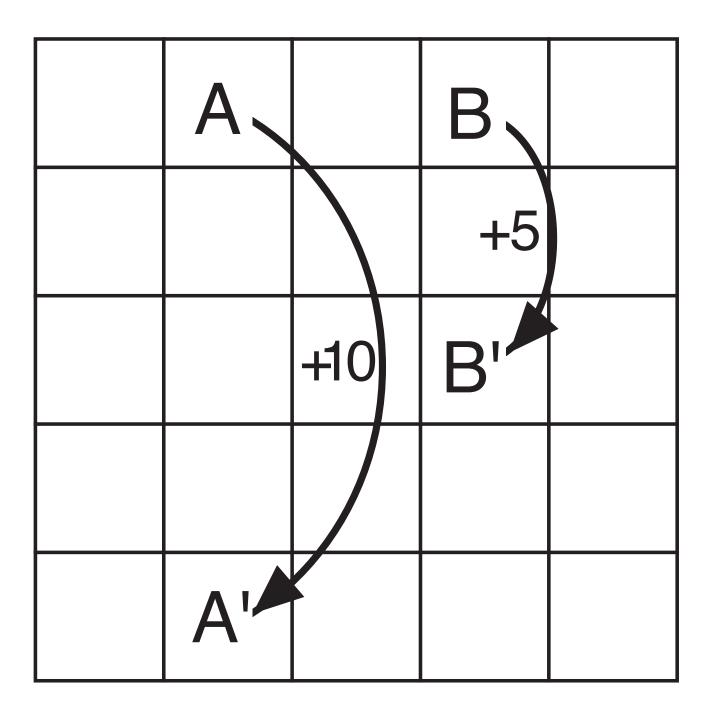


Reward dynamics

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

V at k=0

Iterative Policy Evaluation in GridWorld

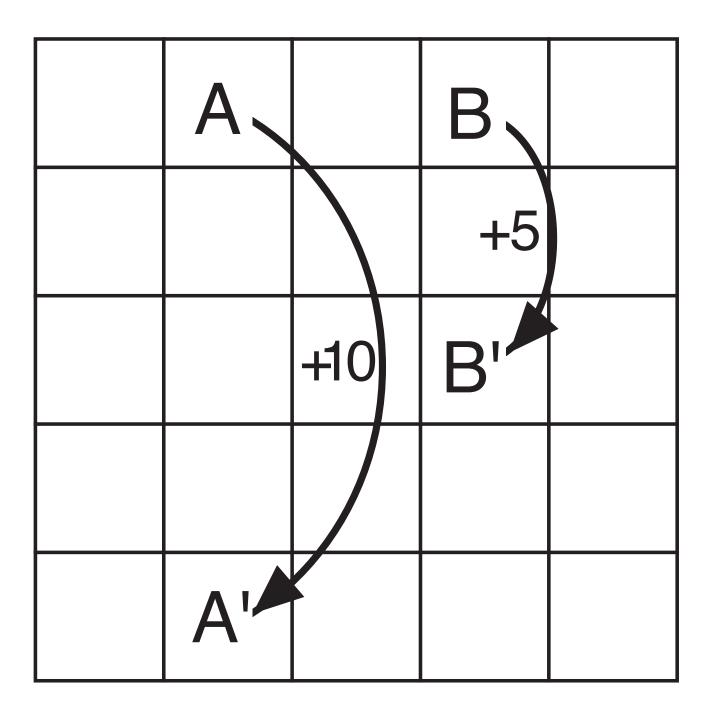


Reward dynamics

-0.5	10	2	5	0.6
-0.3	2.1	0.9	1.3	0.2
-0.3	0.4	0.3	0.4	-0.1
-0.3	0.0	0.0	0.1	-0.2
-0.5	-0.3	-0.3	-0.3	-0.6

V at k=1

Iterative Policy Evaluation in GridWorld

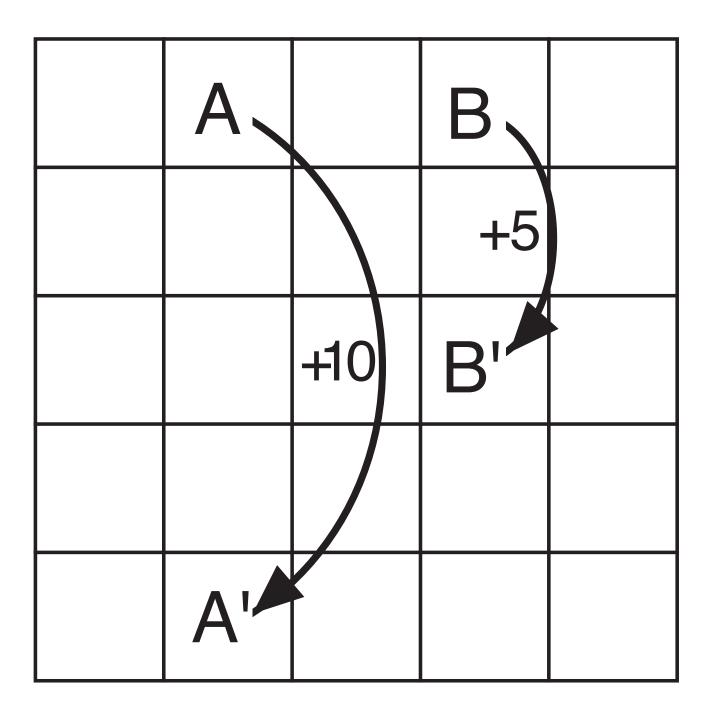


Reward dynamics

1.4	9.7	3.7	5.3	1.0
0.4	2.5	1.8	1.7	0.4
-0.2	0.6	0.6	0.5	-0.1
-0.5	0.0	0.0	0.0	-0.5
-1.0	-0.6	-0.5	-0.5	-1.0

V at k=2

Iterative Policy Evaluation in GridWorld



Reward dynamics

3.4	8.9	4.5	5.3	1.5
1.6	3.0	2.3	1.9	0.6
0.1	0.8	0.7	0.4	-0.4
-1.0	-0.4	-0.3	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

V at k=10,000

Policy Improvement Theorem

Theorem: Let π and π' be any pair of deterministic policies. If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$, then $v_{\pi'}(s) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$.

If you are never worse off at any state by following π' for one step and then following π forever after, then following π' forever has a higher expected value at every state.

Policy Improvement Theorem Proof $v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$ $= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t]$ $= \mathbb{E}_{\pi'} [R_{t+1} + \gamma v_{\pi}(S_{t+1})]$ $\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'$ $= \mathbb{E}_{\pi'} [R_{t+1} + \gamma \mathbb{E}_{\pi'} [R_{t+2} +$ $= \mathbb{E}_{\pi'} \Big[R_{t+1} + \gamma R_{t+2} + \gamma^2 v \Big]$ $\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+2} \right]$

 $\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 I \right]$ $= v_{\pi'}(s).$

$$s_{t} = s, A_{t} = \pi'(s)]$$

$$S_{t} = s]$$

$$(S_{t+1})) \mid S_{t} = s]$$

$$\gamma v_{\pi}(S_{t+2}) \mid S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_{t} = s]$$

$$v_{\pi}(S_{t+2}) \mid S_{t} = s]$$

$$R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3}) \mid S_{t} = s]$$

$$R_{t+3} + \gamma^3 R_{t+4} + \dots \mid S_t = s$$

Greedy Policy Improvement

at least as good:

$$\pi'(s) \doteq \arg \max_{a} q_{\pi}(s, a)$$

= $\arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{T+1}) | S_t = s, A_t = a]$
= $\arg \max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')].$

- (why?)
- Also means that the new (and old) policies are optimal (why?)

Given any policy π , we can construct a new greedy policy π' that is guaranteed to be

• If this new policy is not better than the old policy, then $v_{\pi}(s) = v_{\pi'}(s)$ for all $s \in \mathcal{S}$

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation Loop: $\Delta \leftarrow 0$ Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r+\gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ 3. Policy Improvement policy-stable $\leftarrow true$ For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname{arg\,max}_{a} \sum_{s',r} p(s',r | s,a) [r + \gamma V(s')]$ If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

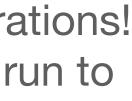
Policy Iteration

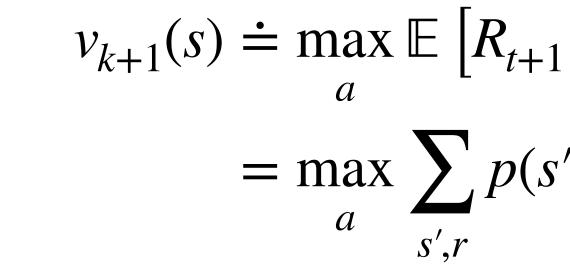
Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

If *policy-stable*, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

This is a lot of iterations! Is it necessary to run to completion?





Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop: $\Delta \leftarrow 0$ $\begin{array}{c|c} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r | s,a) \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{array}$ until $\Delta < \theta$ Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_{a} \sum_{s',r} p(s', r | s, a) \left[r + \gamma V(s') \right]$

Value Iteration

Value iteration interleaves the estimation and improvement steps:

$$_{1} + \gamma v_{k}(S_{t+1}) | S_{t} = s, A_{t} = a]$$

$$s', r \mid s, a) [r + \gamma v_k(s')]$$

$$a) \left[r + \gamma V(s') \right]$$

Summary

- An optimal policy has higher state value than any other policy at every state
- A policy's state-value function can be computed by iterating an expected update based on the Bellman equation
- Given any policy π , we can compute a greedy improvement π' by choosing highest expected value action based on v_{π}
- **Policy iteration:** Repeat: Greedy improvement using v_{π} , then recompute v_{π}
- Value iteration: Repeat: Recompute v_{π} by assuming greedy improvement at every update