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Recap:  
Feedforward Neural Network

• A neural network is many units 
composed together 

• Feedforward neural network: 
Units arranged into layers 

• Each layer takes outputs of 
previous layer as its inputs
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Recap: Training Neural Networks
• Specify a loss  and a set of training examples: 

  

• Training by gradient descent: 

1. Compute loss on training data:  

2. Compute gradient of loss:        

3. Update parameters to make loss smaller: 
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Recap: Automatic Differentiation
• Forward mode sweeps through the graph, computing  for each  

• The numerator varies, and the denominator is fixed 

• At the end, we have computed  for a single input  

• Backward mode does the opposite: 

• For each , computes the local gradient  

• The numerator is fixed, and the denominator varies 

• At the end, we have computed  for each input  

• Key point: The intermediate results are computed numerically at each step
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Image Classification

Problem: Recognize the handwritten digit from an image 

• What are the inputs? 

• What are the outputs? 

• What is the loss?

FIVE



Image Classification with 
Neural Networks

How can we use a neural network to 
solve this problem? 

• How to represent the inputs? 

• How to represent the outputs? 

• What are the parameters? 

• What is the loss?
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Image Recognition Issues
• For a large image, the number of 

parameters will be very large 

• For 32x32 greyscale image, 
hidden layer of 512 units  
hidden layer of 256 units,  
1024×512 + 512×256 + 256×10  
= 657,920 weights (and 1802 offsets) 

• Needs lots of data to train 

• Want to generalize over transformations 
of the input
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Convolutional Neural Networks
• Convolutional neural networks: a specialized architecture for image recognition 

• Introduce two new operations: 

1. Convolutions 

2. Pooling 

• Efficient learning via: 

1. Sparse interactions 

2. Parameter sharing 

3. Equivariant representations



Sparse Interactions

(Goodfellow 2016)

Sparse Connectivity
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Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse 
connections 
due to small 
convolution 

kernel

Dense 
connections

Figure 9.2

Dense  
connections

(Goodfellow 2016)

Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse 
connections 
due to small 
convolution 

kernel

Dense 
connections

Figure 9.2

Sparse 

connections

(Images: Goodfellow 2016)



Sparse Interactions

Dense  
connections

Sparse 

connections

(Images: Goodfellow 2016)

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Parameter Sharing

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution 
shares the same 

parameters 
across all spatial 

locations
Traditional 

matrix 
multiplication 
does not share 
any parameters

Figure 9.5

Traditional neural nets

learn a unique value

for each connection

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
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Equivariant Representations

• We want to be able to recognize 
transformed versions of inputs 
we have seen before: 

• Translation (moved) 

• Rotation 

• Without having been trained on  
all transformed versions

=

(Goodfellow 2016)

Cross-Channel Pooling and Invariance 
to Learned TransformationsCHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.
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Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.
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Operation: Matrix Product
Recall that we can represent the 
activations in a neural network by a 
matrix product
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Matrix (Dot) Product

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a = a>.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x

>
y. We can think of the matrix product C = AB as computing

Ci,j as the dot product between row i of A and column j of B.
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Operation: 2D Convolution

Convolution scans a small block of 
weights (called the kernel) over the 
elements of the inputs, taking 
weighted averages 

• Note that input and output 
dimensions need not match 

• Same weights used for very 
many combinations

(Goodfellow 2016)

2D Convolution
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Replace Matrix Multiplication by 
Convolution

Main idea: Replace matrix multiplications with convolutions 

• Sparsity: Inputs only combined with neighbours 

• Parameter sharing: Same kernel used for entire input



Example: Edge Detection

(Goodfellow 2016)

Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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Efficiency of Convolution
Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Dense matrix Sparse matrix Convolution

Stored floats 319*280*320*28
0 > 8e9

2*319*280 = 
178,640 2

Float muls or 
adds > 16e9

Same as 
convolution 
(267,960)

319*280*3 = 
267,960

(Goodfellow 2016)



Operation: Pooling

• Pooling summarizes its inputs 
into a single value, e.g., 

• max 

• average 

• Max-pooling is parameter-free 
(no bias or edge weights)

2
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8

8



Example: 
Translation Invariance

(Goodfellow 2016)

Max Pooling and Invariance to 
Translation

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.
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Typical Architecture

Input  
Image Convolution Pooling Convolution Pooling Fully-

connected Outputs

Often convolution-then-pooling is

collectively referred to as a


"convolution layer"



Summary

• Classifying images with a standard feedforward network requires vast 
quantities of parameters (and hence data) 

• Convolutional networks add pooling and convolution 

• Sparse connectivity 

• Parameter sharing 

• Translation equivariance 

• Fewer parameters means far more efficient to train


