
Convolutional
Neural Networks

CMPUT 366: Intelligent Systems 
 

GBC §9.0-9.4

Lecture Outline

1. Recap

2. Neural Networks for Image Recognition

3. Convolutional Neural Networks

Recap:
Feedforward Neural Network

• A neural network is many units
composed together

• Feedforward neural network:
Units arranged into layers

• Each layer takes outputs of
previous layer as its inputs

h1

h2

y
x2

x1

h1(x; w(1), b(1)) = g (b(1) +
n

∑
i=1

w(1)
i xi)

y(x; w, b) = g (b(y) +
n

∑
i=1

w(y)
i hi(xi; w(i), b(i)))

= g b(y) +
n

∑
i=1

w(y)
i g b(i) +

n

∑
j=1

w(i)
j xj

Recap: Training Neural Networks
• Specify a loss and a set of training examples:

• Training by gradient descent:

1. Compute loss on training data:

2. Compute gradient of loss:

3. Update parameters to make loss smaller:

L

E = (x(1), y(1)), . . . , (x(n), y(n))

L(W, b) = ∑
i

ℓ (f(x(i); W, b), y(i))

∇L(W, b)

[Wnew

bnew] = [Wold

bold] − η∇L(Wold, bold)

Prediction Target

Recap: Automatic Differentiation
• Forward mode sweeps through the graph, computing for each

• The numerator varies, and the denominator is fixed

• At the end, we have computed for a single input

• Backward mode does the opposite:

• For each , computes the local gradient

• The numerator is fixed, and the denominator varies

• At the end, we have computed for each input

• Key point: The intermediate results are computed numerically at each step

s′�i =
∂si

∂s1
si

s′�n =
∂sn

∂xi
xi

si si =
∂sn

∂si

xi =
∂sn

∂xi
xi

Image Classification

Problem: Recognize the handwritten digit from an image

• What are the inputs?

• What are the outputs?

• What is the loss?

FIVE

Image Classification with 
Neural Networks

How can we use a neural network to
solve this problem?

• How to represent the inputs?

• How to represent the outputs?

• What are the parameters?

• What is the loss?

x1,1

x1,2

x1,3

.

.

.
x32,32

h1,1

h1,2

h1,3

.

.

.
h1,512

h2,1

h2,2

h2,3

h2,256

zero

one

.

.

.
nine

.

.

.

Image Recognition Issues
• For a large image, the number of

parameters will be very large

• For 32x32 greyscale image, 
hidden layer of 512 units  
hidden layer of 256 units,  
1024×512 + 512×256 + 256×10  
= 657,920 weights (and 1802 offsets)

• Needs lots of data to train

• Want to generalize over transformations
of the input

x1,1

x1,2

x1,3

.

.

.
x32,32

h1,1

h1,2

h1,3

.

.

.
h1,512

h2,1

h2,2

h2,3

h2,256

zero

one

.

.

.
nine

.

.

.

=

Convolutional Neural Networks
• Convolutional neural networks: a specialized architecture for image recognition

• Introduce two new operations:

1. Convolutions

2. Pooling

• Efficient learning via:

1. Sparse interactions

2. Parameter sharing

3. Equivariant representations

Sparse Interactions

(Goodfellow 2016)

Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.2

Dense  
connections

(Goodfellow 2016)

Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.2

Sparse

connections

(Images: Goodfellow 2016)

Sparse Interactions

Dense  
connections

Sparse

connections

(Images: Goodfellow 2016)

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse Connectivity
Sparse

connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse Connectivity
Sparse

connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

Parameter Sharing

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations
Traditional

matrix
multiplication
does not share
any parameters

Figure 9.5

Traditional neural nets

learn a unique value

for each connection

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations
Traditional

matrix
multiplication
does not share
any parameters

Figure 9.5

Convolutional neural nets

constrain multiple

parameters to be equal

(Images: Goodfellow 2016)

Equivariant Representations

• We want to be able to recognize
transformed versions of inputs
we have seen before:

• Translation (moved)

• Rotation

• Without having been trained on
all transformed versions

=

(Goodfellow 2016)

Cross-Channel Pooling and Invariance
to Learned TransformationsCHAPTER 9. CONVOLUTIONAL NETWORKS

Large response
in pooling unit

Large response
in pooling unit

Large
response

in detector
unit 1

Large
response

in detector
unit 3

Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.

0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.

344

Figure 9.9

Operation: Matrix Product
Recall that we can represent the
activations in a neural network by a
matrix product

x1,1

x1,2

x1,3

.

.

.
x32,32

h1,1

h1,2

h1,3

.

.

.
h1,512

h2,1

h2,2

h2,3

h2,256

one

.

.

.
nine

.

.

.

h1 = gh (W(1)x + b(1))
h2 = gh (W(2)h1 + b(2))
y = gy (W(3)h2 + b(3))

(Goodfellow 2016)

Matrix (Dot) Product

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a = a>.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x

>
y. We can think of the matrix product C = AB as computing

Ci,j as the dot product between row i of A and column j of B.

34

= •m

p

m

pn

n

Must
match

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a = a>.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x

>
y. We can think of the matrix product C = AB as computing

Ci,j as the dot product between row i of A and column j of B.

34

(Image: Goodfellow 2016)

Operation: 2D Convolution

Convolution scans a small block of
weights (called the kernel) over the
elements of the inputs, taking
weighted averages

• Note that input and output
dimensions need not match

• Same weights used for very
many combinations

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +

ey + fz
aw + bx +

ey + fz
bw + cx +

fy + gz
bw + cx +

fy + gz
cw + dx +

gy + hz
cw + dx +

gy + hz

ew + fx +

iy + jz
ew + fx +

iy + jz
fw + gx +

jy + kz
fw + gx +

jy + kz
gw + hx +

ky + lz
gw + hx +

ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

Figure 9.1

(Image: Goodfellow 2016)

Replace Matrix Multiplication by
Convolution

Main idea: Replace matrix multiplications with convolutions

• Sparsity: Inputs only combined with neighbours

• Parameter sharing: Same kernel used for entire input

Example: Edge Detection

(Goodfellow 2016)

Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

Figure 9.6
(Image: Goodfellow 2016)

Efficiency of Convolution
Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Dense matrix Sparse matrix Convolution

Stored floats 319*280*320*28
0 > 8e9

2*319*280 =
178,640 2

Float muls or
adds > 16e9

Same as
convolution
(267,960)

319*280*3 =
267,960

(Goodfellow 2016)

Operation: Pooling

• Pooling summarizes its inputs
into a single value, e.g.,

• max

• average

• Max-pooling is parameter-free
(no bias or edge weights)

2

5

8

8

Example:
Translation Invariance

(Goodfellow 2016)

Max Pooling and Invariance to
Translation

CHAPTER 9. CONVOLUTIONAL NETWORKS

0.1 1. 0.2

1.1. 1.

0.1

0.2

... ...

... ...

0.3 0.1 1.

1.0.3 1.

0.2

1.

... ...

... ...

DETECTOR STAGE

POOLING STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.

343

Figure 9.8
(Goodfellow 2016)

Max Pooling and Invariance to
Translation

CHAPTER 9. CONVOLUTIONAL NETWORKS

0.1 1. 0.2

1.1. 1.

0.1

0.2

... ...

... ...

0.3 0.1 1.

1.0.3 1.

0.2

1.

... ...

... ...

DETECTOR STAGE

POOLING STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.

343

Figure 9.8

(Goodfellow 2016)

Typical Architecture

Input  
Image Convolution Pooling Convolution Pooling Fully-

connected Outputs

Often convolution-then-pooling is

collectively referred to as a

"convolution layer"

Summary

• Classifying images with a standard feedforward network requires vast
quantities of parameters (and hence data)

• Convolutional networks add pooling and convolution

• Sparse connectivity

• Parameter sharing

• Translation equivariance

• Fewer parameters means far more efficient to train

