Neural Networks

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap

2. Nonlinear models

3. Feedforward neural networks

Recap: Calculus

* Derivatives can be used for optimization

 Minimization: Increase x it derivative Is negative & vice versa

e Partial derivatives are derivatives of "frozen"” function:

0 d
—Jy) = —(f),=,(x)
axf Y dx / =
* Gradient of a function is a vector of all its partial derivatives:

= f(x,)
(VHxy) = |

| Inear Models

e Supervised models we have considered so far have been linear:

/Weights n
y/=f(x; W) = g(W'X) =g (2 Wixi>
N\ \=1

Linear model Inputs

* Linear classification / regression activation

o | function
e [ogistic regression

 Advantages: Efficient to fit (closed form sometimes!)

* Disadvantages: Can be really limited

Fxample: XOR

» The function f(x;,Xx,) = (x; XOR x,)
is not linearly separable Original @ space

* [hereis no way to draw a straight line
with all of the 1's on one side and all of
the O's on the other

L2

* [his means that no linear model can
represent XOR exactly; there will always

be some errors 0

L1

* Question: \What else could we do?

Nonlinear Features
y=f(x;w) = g(W'x) =g (Z Wixl)

One option: Learn a linear model on richer inputs

1. Define a feature mapping ¢(x) that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

y =f(x; W) = g(W (X)) = g (Z Wi[¢(x)]i>
i=1

* Question:

Nonlinear Features for XOR

Original @ space

1+ 1 0 -

What additional features would help?

» [he product of X; and X!

* ¢(x19 X2) — [laxla Xz, xl-XZ]

« w=1[-0.2,0.5,0.5, — 2]

. fix;w) =w! ¢(x) > 0for (0,1) and (1,0)
fix;w) = wlg(x) < 0for (1,1) and (0,0)

| earning Nonlinear Features

 Manually constructing good teatures is extremely hard
 Manually constructed features are not transferrable between domains

* e.9., SIFT features were a revolution in computer vision, but are only for
computer vision

» Deep learning aims to learn ¢ automatically from the data

Neural Units

» Deep learning learns ¢ by composing little functions

e [hese function are called units

b n
h(x; w,b) = g(b+w'X) = g (b + Z Win-)
X1 \ =1
XZ{' offset
2 weights activation
function

e Question: How is this different from a linear model?

Feedforward Neural Network

* A neural network is many units composed together
* Feedforward neural network: Units arranged into layers

* Each layer takes outputs of previous layer as its inputs

O—C

o
COF—3C

Example: XOR network

+1
Qv"@ -
+1

e Activation: g(z) = max{0,z} ("recified linear unit")

* Weights:

e [+1,—1]forhy; [—1,4+ 1] for h,

e |+1,4+1]fory

Viatrix Representation

* You can think of the outputs of
each layer as a vector h

* [he weights from all the outputs
of a previous layer to each of the
units of the layer can be collected

° @ iINto a matrix W
' o e [he offset term for each unit can

be collected into a vector b:

h =g (Wx+ b)

Architecture

O 0
o O

Design decisions:

1. Depth: number of layers
2. Width: number of nhodes in each layer

3. Fully connected?

Universal Approximation Theorem

Theorem:
A feedforward network with one hidden layer with a "squashing”
activation or rectified linear activation and a linear output layer can

approximate any function to within any given error bound, given
enough hidden units.

S0 a wide but shallow feedforward network can represent any
function we're trying to learn!

e Question: \Why bother with multiple layers? (i.e., depth > 1)

Iraining

* Neural networks are trained using variants of gradient descent
* e.g., stochastic gradient descent

 Back propagation is an algorithm that allows for efficient computation of
the gradient

 Modern frameworks can compute the gradient in other ways (e.g.,
automatic differentiation) even for complicated units

e Default choice: Rectified linear units (RelLU)

Hidden Unit Activations

g(z) = max{0,z}

e Other common types:

 tanh(z)
|
l +e%

(sigmoid)

o Sigmoid suffers from vanishing gradients; RelLU does not

Summary

Generalized linear models are insufficiently expressive
Composing GLMs into a network is arbitrarily expressive
* A neural network with a single hidden layer can approximate any function

» But the network might need to be impractically large, prone to overfitting, or
inefficient to train

Neural networks are trained using variants of gradient descent

Architectural choices can make a network easier to train, less prone to
overfitting

