Calculus Refresher

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap
2. QGradient-based optimization

3. Numerical Issues

Recap:. Bayesian Learning

In Bayesian Learning, we learn a distribution over models instead of a
single model

Model averaging to compute predictive distribution
Prior can encode bias over models (like regularization)

Conjugate models: can compute everything analytically

Recap: Monte Carlo

e Often we cannot directly estimate expectations from our model

e Example: non-conjugate Bayesian models

 Monte Carlo estimates: Use a random sample from the distribution to
estimate expectations by sample averages

1. Use an easlier-to-sample proposal distribution instead

2. Sample parts of the model sequentially

| 0oss Minimization

In supervised learning, we choose a hypothesis to minimize a loss function

Example: Predict the temperature

o Dataset: temperatures y(i) from a random sample of days

* Hypothesis class: Always predict the same value U

e [0SS function:

I &
Lip) = — D 00— py?
=1

Optimization

Optimization: finding a value of x that minimizes f(x)

x* = arg min f(x)

» Temperature example: Find u that makes L(x) small

Gradient descent: lteratively move from current estimate in the direction that
makes f(x) smaller

e For discrete domains, this is just hill climbing:
teratively choose the neighbour that has minimum f(x)

* For continuous domains, neighbourhood is less well-defined

Derivatives

d
. The derivative f'(x) = — f(x) 1
X

of a function f(x) is the slope of f
at point x

* When f(x) > 0, fincreases with 0
small enough Increases in x -1

« When f(x) < 0, fdecreases
with small enough increases in x

QO 0O O QO
L

8°0-E

©
O O W o

9°0-

€0-¢E

1'0-€
¢ 0te

v 0+e

9'0+e

60+e

R e ol =/

v L+e
o' L+e
Q' L+e

MVultiple Inputs

Example:
Predict the temperature based on pressure and humidity

» Dataset: (xl(l), 2(1),)2(1)), ., (xl(m) (m),y(m)) = {(X(’),y(’)) |1 <i< m}

» Hypothesis class: Linear regression: h(X; W) = wy + WX + W)X,

e [0SS function:

n

|
_ (D) _ (1).
L(w) = - E (h(x W))

=1

Partial Derivatives

Partial derivatives: How much does f(X) change when we only change one
of its inputs Xx;?

e (Can think of this as the derivative of a conditional function
gx) =fx;, ..., Xy oo, X))

2 f0 = g0
Ox; Y dx,-gxi'

GGradient

« The gradient of a function f(X) is just a vector that contains all of its
partial derivatives:

—f®)
Vix)=|

°_f(x)

ox,

Gradient Descent

* [he gradient of a function tells how to change every element of a vector to
Increase the function

o |f the partial derivative of X; is positive, iIncrease Xx;

 Gradient descent:
teratively choose new values of x in the (opposite) direction of the gradient:

x1ew — Xold — 7 V f(Xold) |

* This only works for sufficiently small CM

* Question: How much should we change x°ld7 learning rate

Where Do Gradients Come From?

Question: How do we compute the gradients we need for gradient descent?

1. Analytic expressions / direct implementation:

1 n
Lw) = —), 6(0) = p)?
=1

1 n — 0 | 2_
= D YO = 2y + p
i=1)

1
VL(u) =— Z —2y(i) + 24

n
=1

Where Do Gradients Come From?

2. Method of differences

VL(x), % L(X + €e;) — L(x)

(for "sufficiently” tiny €)
Question: \Why would we ever do this?

Question: \What are the drawbacks?

Where Do Gradients Come From?

3. The Chain Rule (of Calculus)

dx d_y dx
e, h(x) = f(g(x)) = h'(x) = f(g(x))g'(x)

* |f we know formulas for the derivatives of components of a function, then
we can build up the derivative of their composition mechanically

dz dz dy

 Most prominent example: Back-propagation in neural networks

Approximating Real Numbers

Computers store real numbers as finite number of bits
Problem: There are an infinite number of real numbers in any interval

Real numbers are encoded as floating point numbers:

+ 1.001...011011 x 21001.0011

significand exponent

* Single precision: 24 bits signficand, 8 bits exponent
* Double precision: 53 bits significand, 11 bits exponent

Deep learning typically uses single precision!

1001...0011

U n d e rﬂ OW 1.001...011010 x 27 ewmen

significand

e Numbers that are smaller than 1.00...01 x 2-1111..17111T wi|| be rounded down
tO zero

e Sometimes that's okay! (Almost every number gets rounded)

e (Often it's not (when?)

 Denominators: causes divide-by-zero
* |0Q: returns -inf

* |og(negative): returns nan

1001...0011

Overflow oo™

significand

Numbers bigger than 1.111...1111 x 21111 will be rounded up to infinity

Numbers smaller than -1.111...1111 x 21111 will be rounded down to
negative infinity

exp Is used very frequently
* Undertlows for very negative numbers
* Qverflows for "large"” numbers

89 counts as "large’

1001...0011

Addition/Subtraction ™.

* Adding a small number to a large number can have no effect (why?)

Example:

>>> A =np.array([0., 1e-8])

>>> A =np.array([0., 1e-8]).astype('float3:a")
>>> A.argmax()

1

>>> (A + 1).argmax() 1e-8 is not the

0O smallest possible
float32

>>> A+]

array([1l., 1.], dtype=tloati:)

Softmax

exp(x;)

Z;zl exp(x;)

softmax(X); =

e Softmax is a very common function

» Used to convert a vector of activations (i.e., numbers) into a probability
distribution

« Question: Why not normalize them directly without exp?

« But exp overflows very quickly:

. Solution: softmax(z) where Z = X — max x;
J

| OgQ

e Dataset likelihoods shrink exponentially quickly in the number of datapoints

 Example:

. Likelihood of a sequence of 5 fair coin tosses = 27> = 1/32

» Likelihood of a sequence of 100 fair coin tosses = 2~100

* Solution: Use log-probabilities instead of probabilities

log(pprps---p,) =logp, + ... +logp,
» log-prob of 1000 fair coin tosses is 100010g 0.5 ~ — 693

(General Solution

e Question:
What is the most general solution to numerical problems??

- Standard libraries

 [heano, lensorflow both detect common unstable expressions

* SCIpy, numpy have stable implementations of many common patterns
(e.g., softmax, logsumexp, sigmoid)

Summary

 (Gradients are just vectors of partial derivatives
* (Gradients point "uphill’

 Learning rate controls how fast we walk uphill

* Deep learning is fraught with numerical issues:
* Underflow, overflow, magnitude mismatches

 Use standard implementations whenever possible

