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Assignment #2

• Assignment #2 was released on Friday  
See eClass 

• Due Friday, February 28 at 11:59pm 

• This week's lab: Thursday, 5:00pm to 8:00pm, BS M 149 
(this room!) 

• Not mandatory 

• You can get help from the TAs on your assignment in labs

http://www.campusmap.ualberta.ca/?b=bs


Recap: Overfitting

• Overfitting is when a learned model fails to generalize due to 
overconfidence and/or learning spurious regularities 

• Bias-variance tradeoff: More complex models can be more accurate, 
but also require more data to train



Lecture Outline

1. Recap & Logistics 
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3. Model Probabilities 

4. Using Model Probabilities 

5. Prior Distributions as Bias



Avoiding Overfitting

There are multiple approaches to avoiding overfitting: 

1. Pseudocounts: Explicitly account for regression to the mean 

2. Regularization: Explicitly trade off between fitting the data and model 
complexity 

3. Cross-validation: Detect overfitting using some of the training data



Pseudocounts
• When we have not observed all the values of a variable, those variables 

should not be assigned probability zero 

• If we don't have very much data, we should not be making very extreme 
predictions (why?) 

• Solution: artificially add some "pretend" observations for each value of a 
variable (pseudocounts) 

• When there is not much data, predictions will tend to be less extreme 
(why?) 

• When there is more data, the pseudocounts will have less effect on the 
predictions



Regularization
• We shouldn't choose a complicated model unless there is clear evidence 

for it 

• Instead of optimizing directly for training error, optimize training error plus a 
penalty for complexity: 
 

• regularizer measures the complexity of the hypothesis 

• λ is the regularization parameter: indicates how important hypothesis 
complexity is compared to fit 

• Larger λ means complexity is more important

arg min
h∈ℋ ∑

e

error(e, h) + λ × regularizer(h)



Types of Regularizer
• Number of parameters 

• Degree of polynomial 

• L2 regularizer ("ridge regularizer"): sum of squares of weights 

• Prefers models with smaller weights 

• L1 regularizer ("lasso regularizer"): sum of absolute values of weights 

• Prefers models with fewer nonzero weights 

• Often used for feature selection: only features with nonzero weights are 
used



Cross-Validation

• Previous methods require us to already know how simple a model "should" 
be: 

• How many pseudocounts to add? 

• What should regularization parameter be? 

• Ideally we would like to be able to answer these questions from the data 

• Question: Can we use the test data to see which of these work best? 

• Idea: Use some of the training data as an estimate of the test data



Cross-Validation Procedure
Cross-validation can be used to estimate most bias-control parameters 
(hyperparameters) 

1. Randomly remove some datapoints from the training set; these examples 
are the validation set 

2. Train the model on the training set using some values of hyperparameters 
(pseudocounts, polynomial degree, regression parameter, etc.) 

3. Evaluate the results on the validation set 

4. Update values of hyperparameters 

5. Repeat



k-Fold Cross-Validation

• We want our training set to be as large as possible, so we get better 
models 

• We want our validation set to be as large as possible, so that it is an 
accurate estimation of test performance 

• When one is larger, the other must be smaller 

• k-fold cross-validation lets us use every one of our examples for both 
validation and training



-Fold Cross-Validation Procedurek

1. Randomly partition training data into  approximately equal-sized sets (folds) 

2. Train  times, each time using all the folds but one; remaining fold is used for 
validation 

3. Optimize hyperparameters based on validation errors 

• Each example is used exactly once for validation and  times for training 

• Extreme case:  is called leave-one-out cross-validation

k

k

k − 1

k = n



Overfitting Summary
• Overfitting is when a learned model fails to generalize due to 

overconfidence and/or learning spurious regularities 

• Bias-variance tradeoff: More complex models can be more accurate, 
but also require more data to train 

• Techniques for avoiding overfitting: 

1. Pseudocounts: Add imaginary observations 

2. Regularization: Penalize model complexity 

3. Cross-validation: Reserve validation data to estimate test error



Exact Bayesian Models

CMPUT 366: Intelligent Systems 
 

P&M §10.4



Learning Point Estimates

• So far, we have considered how to find the best single model, e.g., 

• learn a decision tree 

• optimize the weights of a linear or logistic regression 

• The predictions might be a probability distribution, but they are coming out 
of a single model: 

  Probability of target Y given observation X 

• We have been learning point estimates of our model

P(Y ∣ X)



Learning Model Probabilities

• Instead, we could learn a distribution over models: 
 
 
 

• This is called Bayesian learning: we never discard any model, we only 
weight them differently depending upon their posterior probability 

• Question: Why would we want to do that?

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)

What is a Model?

• We can do Bayesian learning over finite sets of models: 

• e.g., { rank by feature 𝜃 | 𝜃 ∈ {height, weight, age} } 

• We can do Bayesian learning over parametric families of 
models: 

• e.g., { regression with weights w0=𝜃1, w1=𝜃2 | 𝜃 ∈ ℝ2 } 

• We can mix the two!   

• 𝜃 can encode choice of model family and parameters



What is the Dataset?

• We have an expression for the probability of a single example given a model: 
 

• Question: What is the expression for the probability of a dataset of observations 
 given a model? 

• Easiest approach: Assume that the dataset independent, identically distributed 
observations:  

 

Pr(X, Y ∣ θ)

D = {(X1, Y1), …, (Xm, Ym)}

(Xi, Yi) ∼ P(X, Y ∣ θ)

Pr(D |θ) = Pr(X1, Y1 |θ) × … × Pr(Xm, Ym |θ)

=
m

∏
i=1

Pr(Xi, Yi |θ)

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



What is the  
Posterior Model Probability?

Now we can use Bayes' Rule to compute the posterior 
probability of a model 𝜃: 
 
 
 

Pr(θ |D) =
Pr(D |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

∑θ′ � Pr(D |θ′�) Pr(θ′�)

Prior probability 
of model 𝜃

Likelihood of data D 
given model 𝜃

•  Probability of target Y and features X given model 𝜃 

•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



Example: Biased Coin
• Back to coin flipping!  We can flip a coin and observe heads or tails, but we 

don't know the coin's bias 

• Model: Binomial observations  

• Observations:  

• Bias:  

• Likelihood:  

• Question: What should the prior  be?

Y ∈ {h, t}

θ ∈ [0,1]

Pr(H ∣ θ) = θ

Pr(θ)



p(
𝜃)

𝜃

n0=0 n1=0 n0=1 n1=2
n0=2 n1=4 n0=4 n1=8

p(
𝜃)

𝜃

n0=40 n1=80

Biased Coin: 
Posterior Probabilities

• Before we see any flips, all biases 
are equally probable (according to 
our prior) 

• After more and more flips, we 
become more confident in 𝜃 

• 𝜃 with highest probability is 2/3 

• Expected value of 𝜃 is less! 
(why?) 

• But with more observations, 
mode and expected value get 
closer



Beta-Binomial Models
• Likelihood:  

• aka  

• Dataset likelihood:  

• aka  

• Prior:  

• aka  

• Models of this kind are called Beta-Binomial models 

• They can be solved analytically: 

P(h ∣ θ) = θ

Bernoulli(h ∣ θ)

θn1 × (1 − θ)n0

Binomial(n1, n0)

P(θ) ∝ 1

Beta(1,1)

Pr(θ ∣ D) = Beta(1 + n1,1 + n0)



Conjugate Priors

• The beta distribution is a conjgate prior for the binomial distribution: 

• Updating a beta prior with a binomial likelihood gives a beta posterior 

• Other distributions have this property: 

• Gaussian-Gaussian (for means) 

• Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)



Using Model Probabilities

So we can estimate Pr(𝜃 | D).  What can we do with it? 

1. Parameter estimates 

2. Target predictions (model averaging) 

3. Target predictions (point estimates)



1. Parameter Estimates

• Sometimes, we really want to know the parameters of a model itself 

• E.g., maybe I don't care about predicting the next coin flip, but I do want to 
know whether the coin is fair 

• Can use  to make statements like  

  

Pr(θ ∣ D)

Pr(0.49 ≤ θ ≤ 0.51) > 0.9



2. Model Averaging

• Sometimes we do want to make predictions: 

  

• This is called the posterior predictive distribution 

• Question: How is this different from just learning a point estimate of a 
model, and then predicting with that model?

Pr(Y |D) = ∑
θ

Pr(Y |θ) Pr(θ |D)



3. Maximum A Posteriori
• Sometimes we do want to make predictions, but... 

  

• the posterior predictive distribution may be expensive to compute (or even 
intractable) 

• One possible solution is to use the maximum a posterior model as a point estimate: 

 

• Question: Why would you do this instead of just using a point estimate that was 
computed in the usual way?

Pr(Y |D) = ∫
1

0
Pr(Y |θ) Pr(θ |D)dθ

Pr(Y |D) ≃ Pr(Y | ̂θ)  where  ̂θ = arg max
θ

Pr(θ |D)



Prior Distributions as Bias

• Suppose I'm comparing two models,  and  such that 

 

• Question: Which model has higher posterior probability?  

• Priors are a way of encoding bias: the tell use which models to prefer when 
the data doesn't

θ1 θ2

Pr(D ∣ θ1) = Pr(D ∣ θ2)



Priors for Pseudocounts

• We can straightforwardly encode pseudocounts as prior information in beta-
binomial and dirichlet-multinomial models 

• E.g., for pseudocounts k1 and k0, 

p(𝜃) = Beta(1+k1, 1+k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also 

• L2 regularization is equivalent 
to a Gaussian prior on the 
weights: p(w) = N(w|m,s) 

• L1 regularization is equivalent 
to a Laplacian prior on the 
weights: p(w) = exp(|w|)/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Summary
• In Bayesian Learning, we learn a distribution over models instead of a 

single model 

• When the model is conjugate, posterior probabilities can be computed 
analytically 

• See next lecture for non-conjugate models 

• We can make predictions by model averaging to compute the posterior 
predictive distribution 

• The prior can encode bias over models, much the same as regularization 

• In fact, it can exactly encode certain kinds of regularization


