Supervised Learning Intro

CMPUT 366: Intelligent Systems

P&M §7.1-7.2

Lecture Outline

- 1. Recap
- 2. Supervised Learning Problem
- 3. Measuring Prediction Quality

Recap: Causal Inference

• Observational queries $P(Y \mid X = x)$ are different from causal queries $P(Y \mid do(X = x))$

 $\begin{array}{c} Z \\ X \\ X \end{array}$

- To evaluate causal query $P(Y \mid do(X = x))$:
 - 1. Construct post-intervention distribution \hat{P} by removing all links from X's direct parents to X
- \hat{P} (z) (x) \rightarrow (Y)

- 2. Evaluate the observational query $\hat{P}(Y \mid X = x)$ in the post-intervention distribution
- Alternative representation: Influence diagrams
 - Causal query in the augmented distribution: $\tilde{P}(Y \mid F_X = x)$
 - Observational query in the augmented distribution: $\tilde{P}(Y \mid X = x, F_X = idle)$

Not every correct Bayesian network is a valid causal model

Supervised Learning

Definition: A supervised learning task consists of

- A set of input features $X_1, ..., X_n$
- A set of target features Y_1, \ldots, Y_k
- A set of training examples, for which both input and target features are given
- A set of test examples, for which only the input features are given

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- Classification: Y_i are discrete
- Regression: Y_i are real-valued

Regression Example

- Aim is to predict the value of $\operatorname{target} Y$ based on $\operatorname{features} X$
- Both X and Y are real-valued
 - Exact values of both targets and features may not have been in the training set
 - e_8 is an interpolation problem: X is within the range of the training examples' values
 - e_9 is an extrapolation problem: X is outside the range of the training examples' values

Ex.	X	Υ
e 1	0.7	1.7
e 2	1.1	2.4
e 3	1.3	2.5
e 4	1.9	1.7
e 5	2.6	2.1
e 6	3.1	2.3
e 7	3.9	7

e 8	2.9	?
e 9	5.0	?

Data Representation

- For real-valued features, we typically just record the feature values
- For discrete features, there are multiple options:
 - Binary features: Can code $\{false, true\}$ as $\{0,1\}$ or $\{-1,1\}$
 - Can record numeric values for each possible value
 - Cardinal values: Differences are meaningful (e.g., 1,2,7)
 - Ordinal values: Order is meaningful (e.g., Good, Fair, Poor)
 - Categorical values: Neither differences nor order meaningful (e.g., Red, Green, Blue)
 - Vector of indicator variables: One per feature value, exactly one is true (sometimes called a "one-hot" encoding) (e.g., Red as (1,0,0), Green as (0,1,0), etc.)

Classification Example: Holiday Preferences

- An agent wants to learn a person's preference for the length of holidays
- Holiday can be for 1,2,3,4,5, or 6 days
- Two possible representations:

Ex.	Y
e 1	1
e 2	6
e 3	6
e 4	2
e 5	1

Ex.	Y ₁	Y ₂	Y 3	Y ₄	Y ₅	Y 6
e ₁	1	0	0	0	0	0
e 2	0	0	0	0	0	1
e 3	0	0	0	0	0	1
e 4	0	1	0	0	0	0
e 5	1	0	0	0	0	0

Generalization

- Question: What does it mean for a (supervised) learning agent to perform well?
- We want to be able to make correct predictions on unseen data, not just the training examples
 - We are even willing to sacrifice some training accuracy to achieve this
 - We want our learners to generalize: to go beyond the given training examples to classify new examples well
 - Problem: We can't observe performance on unobserved examples!
- We can estimate generalization performance by evaluating performance on the test set (Why?)
 - The learning algorithm doesn't have access to the test data, but we do

Generalization Example

Example: Consider binary two classifiers, **P** and **N**

- P classifies all the positive examples from the training data as *true*, and all others as *false*
- N classifies all of the negative examples from the training data as *false*, and all others as *true*

Question: Which classifier performs better on the training data?

Question: Which classifier generalizes better?

Bias

- The **hypothesis** is the function h(X) that we learn
- The hypothesis space is the set of possible hypotheses
- A preference for one hypothesis over another is called bias
 - Bias is not a bad thing in this context!
 - Preference for "simple" models is a bias
 - Which bias works best for generalization is an empirical question

Learning as Search

- Given training data, a hypothesis space, an error measurement, and a bias, learning can be reduced to search
- Learning searches the hypothesis space trying to find the hypothesis that best fits the data given the bias
 - Search space is prohibitively large (typically infinite)
 - Almost all machine learning methods are versions of local search

Measuring Prediction Error

- We choose our hypothesis partly by measuring its performance on training data
 - Question: What is the other consideration?
- This is usually described as minimizing some quantitative measurement of error (or loss)
 - Question: What might error mean?

0/1 Error

Definition:

The 0/1 error for a dataset E of examples and hypothesis \hat{Y} is the number of examples for which the prediction was not correct:

$$\sum_{e \in E} 1 \left[Y(e) \neq \hat{Y}(e) \right]$$

- Not appropriate for real-valued target features (why?)
- Does not take into account how wrong the answer is
 - e.g., $1[2 \neq 1] = 1[6 \neq 1]$
- Most appropriate for binary or categorical target features

Absolute Error

Definition:

The absolute error for a dataset E of examples and hypothesis \hat{Y} is the sum of absolute distances between the predicted target value and the actual target value:

$$\sum_{e \in E} |Y(e) - \hat{Y}(e)|.$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
- Most appropriate for cardinal or possibly ordinal values

Squared Error

Definition:

The squared error (or sum of squares error or mean squared error) for a dataset E of examples and hypothesis \hat{Y} is the sum of squared distances between the predicted target value and the actual target value:

$$\sum_{e \in E} \left(Y(e) - \hat{Y}(e) \right)^2.$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
 - Large errors are much more important than small errors
- Most appropriate for cardinal values

Worst-Case Error

Definition:

The worst-case error for a dataset E of examples and hypothesis \hat{Y} is the maximum absolute difference between the predicted target value and the actual target value:

$$\max_{e \in E} \left| Y(e) - \hat{Y}(e) \right|.$$

- Meaningless for categorical variables
- Takes account of how wrong the predictions are
 - but only on one example (the one whose prediction is furthest from the true target)
- Most appropriate for cardinal values

Probabilistic Predictors

- Rather than predicting **exactly** what a target value will be, many common algorithms predict a **probability distribution** over possible values
 - Especially for classification tasks
- Vectors of indicator variables are the most common data representation for this scheme:
 - Target features of training examples have a single 1 for the true value
 - Predicted target values are probabilities that sum to 1

Probabilistic Predictions Example

X	Y _{cat}	Y _{dog}	Ypanda
	1	0	0
	0	1	0

X	Ŷ _{cat}	Ŷ _{dog}	Ŷpanda
	0.5	0.45	0.05

Likelihood

• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

Definition:

The likelihood for a dataset E of examples and hypothesis \hat{Y} is the **probability** of independently observing the examples according to the probabilities assigned by the **hypothesis**:

$$\Pr(E) = \prod_{e \in E} \hat{Y}(e = Y(e)).$$

- This has a clear Bayesian interpretation
- Numerical stability issues: product of probabilities shrinks exponentially!
 - Floating point underflows almost immediately

Log-Likelihood

Definition:

The \log -likelihood for a dataset E of examples and hypothesis \hat{Y} is the \log -probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$\log \Pr(E) = \log \prod_{e \in E} \hat{Y}(e = Y(e))$$
$$= \sum_{e \in E} \log \hat{Y}(e = Y(e)).$$

- Taking log of the likelihood fixes the underflow issue (why?)
- The log function grows monotonically, so maximizing log-likelihood is the same thing as maximizing likelihood:

$$\left(\Pr(E \mid \hat{Y}_1) > \Pr(E \mid \hat{Y}_2)\right) \iff \left(\log\Pr(E \mid \hat{Y}_1) > \log\Pr(E \mid \hat{Y}_2)\right)$$

Trivial Predictors

- The simplest possible predictor **ignores all input features** and just predicts the **same value** *v* for any example
- Question: Why would we every want to think about these?

Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- no negative examples
- n₁ positive examples
- Question: What is the optimal single prediction?

Measure	Optimal Prediction
0/1 error	0 if $n_0 > n_1$ else 1
absolute error	0 if $n_0 > n_1$ else 1
squared error	$\frac{n_1}{n_0 + n_1}$
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$
likelihood	$\frac{n_1}{n_0 + n_1}$
log-likelihood	$\frac{n_1}{n_0 + n_1}$

Summary

- Supervised learning is learning a hypothesis function from training examples
 - Maps from input features to target features
 - Classification: Discrete target features
 - Regression: Real-valued target features
- Preferences among hypotheses are called bias
 - An important component of learning!
- Choice of error measurement (loss) is an important design decision
 - Each loss has its own advantages/disadvantages