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Recap: Independence In a
Belief Network

Patterns of dependence:

1. Chain: Ends are not marginally independent,
obut conditionally independent given middle

2. Common ancestor: Descendants are not marginally
iIndependent, but conditionally independent given ancestor
O

3. Common descendant: Ancestors are marginally

? iIndependent, but not conditionally independent given

descendant



Recap: Variable Elimination

1. Condition on observations by conditioning

2. (Construct joint distribution factor by multiplication

3. Remove non-guery, non-observed variables by summing out

4. Normalize at the end

Interleaving order of sums and products can improve efficiency:

Z Z £(0,A,B,C) X f»(C, D, E) 112 computations
A E

— Zfl(Q’A’B’ C) | X Zfz(C, D, E) 28 computations
A E



Causality Introduction:
A lale of ITwo Beliet Networks
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Natural network

e [wo different ways to factor the joint distribution between
whether the sidewalk is Wet and whether it is Raining:

P(Rain, Wet) = P(Wet | Rain)P(Rain)
= P(Rain | Wet)P(Wet)

* Each factorization corresponds to a different Belief Network Inverted network



1he Inverted Network (o
Isn't Crazy
©

Inverted network

Corresponds to the factoring P(Rain | Wet)P(Wet)

e Sometimes you want to answer the guestion
Given that | observe that the sidewalk is Wet, what is the probability that
it is currently Raining?

* Thisis just updating our confidence in a hypothesis (it is Raining) given our
observations (Wet sidewalk)

* Could preprocess the causal network into this form to avoid having to do a lot of
computations with Bayes' Rule



The Inverted Network (o
s Crazy
©

Corresponds to the factoring P(Rain | Wet)P(Wet) inverted network

* |If | cause my sidewalk to be Wet (by throwing water on it), what is the
probability that it is Raining?

e S0, condition on Wet=true

* [his network seems to imply that it will be
P(Rain | Wet = True) = .78 > P(Rain) = .5

e ... walt, what?

* Question: \What is going wrong in this example?



Observations vs. Interventions

* [he semantics of Belief Networks are defined for observational questions
 [hey don't directly model causal questions

* |nfact, in our Rainy Sidewalk example, we would get exactly the same
(crazy) answer to our causal guestion from querying the natural network

* T[he joint distribution represented by the networks doesn't model the situation In
which | intervene

 Adding a variable James_Throws_Water to the distribution



Simpson's Paradox

Suppose we have information from two trials of a new drug:
One on male test subjects, and one on female test subjects.

* |s the drug effective for males?
PR | D = true, G = male) = 0.60
PR | D = false, G = male) = 0.70

* |s the drug effective for females?
P(R | D = true, G = female) = 0.20
P(R | D = false, G = female) = 0.30

* |s the drug effective”
PR | D = true) = 0.50
P(R | D = false) = 0.40




Simpson's Paradox, explained

The joint distribution factors as
P(G,D,R)=PR | D,G)X P(D| G)X P(G)

Per-gender queries are answered directly by P(R | D, G)
Y _P(R| G,D)P(G)
Y.< PR | G, D)P(G)

For the overall query, we want P(R | D) =

But that's not how the distribution factors. If we follow the factoring above, we will instead compute

PR, D) 2sPG.D.R) X PR|D,GPD|GHG)
PD) ¥ ..PG.D,R) ¥ .. PR|D,G)P(D|GP(G)

P(R|D) =

* |n our dataset, knowing whether a subject got the drug tells you something
about their gender, and males have a higher overall recovery rate than females

« P(R| G =male)=0.625 vs P(R| G = female) = 0.275



Selection Bias

This problem is an example of selection bias

Whether subjects received treatment is systematically related to
thelr response to the treatment

This is why randomized trials are the gold standard for causal
guestions:

* The only thing that determines whether or not a subject is
treated is a random number

 Random number is definitely independent of anything else
(including response to treatment)




Post-Intervention Distribution

 [he causal query is really a query on a different distribution in which we

have forced D = true

* Different from the original joint d
that D = true

e \We will refer to the two distributi

and the post-intervention distr

Istribution conditioned on observing

ons as the observational distribution
ibution

o With a post-intervention distribution, we can compute the answers to causal

gueries using existing techniques
(e.g., variable elimination)




Post-Intervention Distribution
for Simpson's Paradox

« Observational distribution:

P(G.D.R) = P(R | D.G) X P(D | G) X P(G) °

* Question: \What is the post-intervention distribution for
Simpson's Paradox?

« We're forcing D = true, so P(D = true | G) = 1
for all g € dom(G)

« That's the same as just omitting the P(D | G) factor e

e Post-intervention distribution:

P(G.D.R) = P(R | D,G) x P(G) Q G



The Do-Calculus

How should we express causal queries?
One approach: The do-calculus

Condition on observations:
P(Y | X =x)

EXxpress interventions with special do operator:
P(Y | do(X = x))

Allows us to mix observational and interventional information:
P(Y|Z =z ,do(X = x))



Fvaluating Causal Queries
With the Do-Calculus

Given a query P(Y | do(X = x),Z = 2):

1. Construct post-intervention distribution P by removing all links from
X's direct parents to X

2. Evaluate the observational query IA’(Y | X = x,Z = 7) in the post-
intervention distribution



Example: Simpson's Paradox

Observational distribution: P(G,D,R) =P[R |D, G) x PD | G) x P(G)
Observational query:

P(R,D) 2sPG.D.R) 3, PR|D,G)PD|GPG)

P(D) ~ Y, .PG.D.R) ¥ .P(RID.GPD|GPG)

Observational query values: P(R | D=true) = 0.50 P(R | D=false) = 0.40

P(R|D) =

Post-intervention distribution for causal query P(R | do(D=true)):

N

P(G,D,R) = P(R | D, G) x P(G)

Causal query:
Y PRRID,G)P(G) e

* (Causal query values:
PR | do(D=true)) = 0.40 P(R | do(D=false)) = 0.50




Example: Rainy Sidewalk

Query: P(Rain | do(Wet=true)
Natural network:
« Observational distribution: P(Wet, Rain) = P(Wet|Rain)P(Rain)
» Post intervention distribution: P(Wet=true, Rain) = P(Rain)P(Wet)

On0
OXO

» P(Rain | do(Wet=true)) = .50 Observational Post-intervention

Inverted network:
e Observational distribution: P(Wet, Rain) = P(Rain | Wet)P(Rain)

e Post Intervention distribution:

N

P(Wet=true, Rain) = P(Rain | Wet)P(Wet)

O-®
O-®

e P(Rain | do(Wet=true)) = .78

Observational Post-intervention



Causal Models

* [he natural network gives the correct answer to our causal query,
but the inverted network does not (Why?)

* Not every factoring of a joint distribution is a valid causal model

Definition:
A causal model is a directed acyclic graph of random variables such
that for every edge X-Y, the value of random variable X Is realized

before the value of random variable Y.



Alternative Representation:
INfluence Diagrams

Instead of adding a new operator, we can instead represent
causal queries by augmenting the causal model with decision

variables Fp for each potential intervention target D.

dom(Fp) = dom(D) U {idle}

P(D|pa(D)) it Fp, = idle,
P(D|pa(D), Fp) = § 1 if Fp, # idle A D = Fj,
0 otherwise.



INfluence Diagrams Examples
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OzO



Summary

e Observational queries P(Y | X=x) are different from causal queries
P(Y | do(X=x))

* To evaluate causal query P(Y | do(X=x)):

1. Construct post-intervention distribution P by removing all
inks from X's direct parents to X

2. Evaluate the observational query P(Y | X=x, Z=7) in the post-
intervention distribution

* Not every correct Bayesian network is a valid causal model



