Inference in Belief Networks

CMPUT 366: Intelligent Systems

P&M §8.4

Lecture Outline

- 1. Recap
- 2. Factors
- 3. Variable Elimination
- 4. Efficiency

Recap: Belief Networks

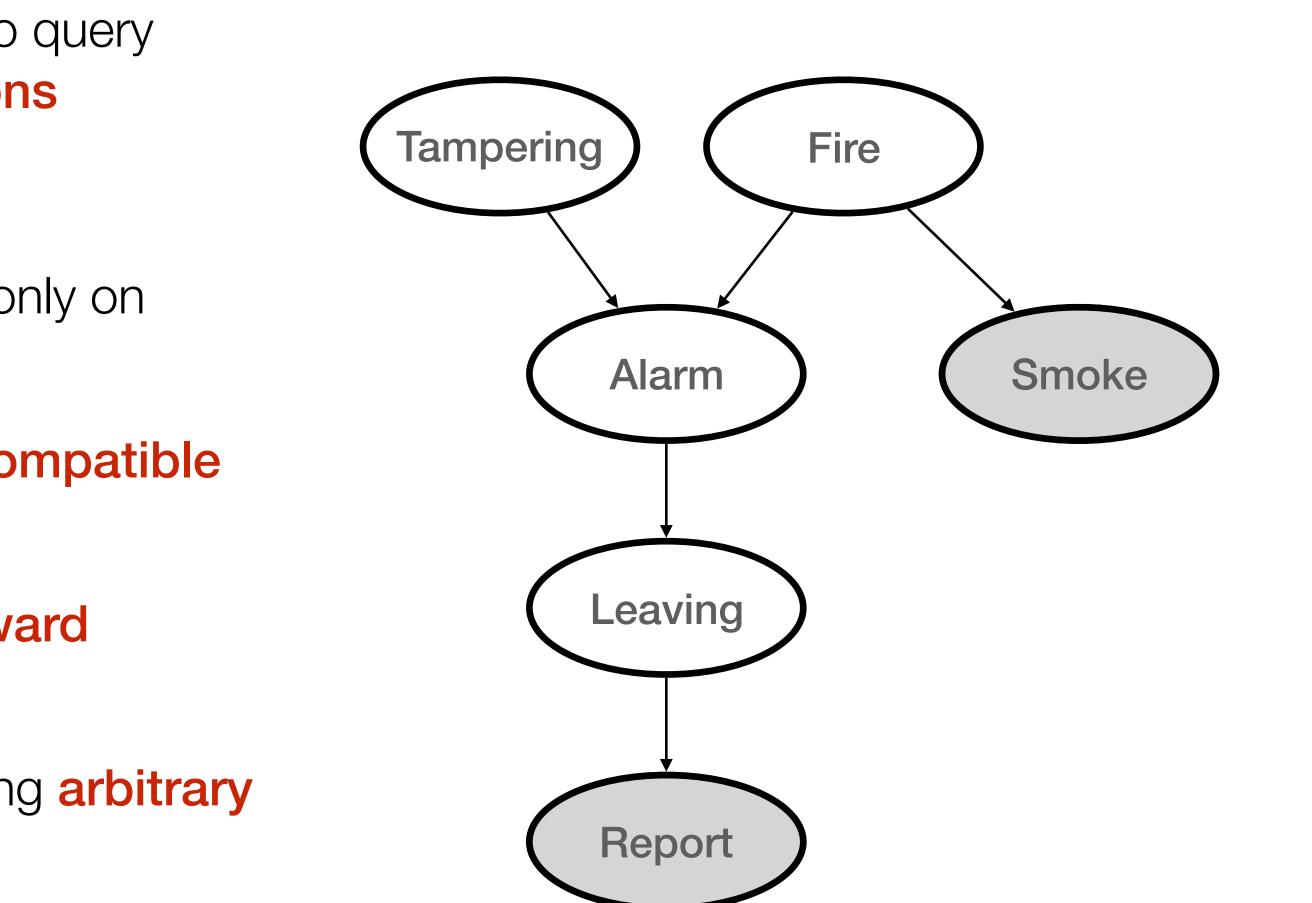
Definition:

A belief network (or Bayesian network) consists of:

- 1. A directed acyclic graph, with each node labelled by a random variable
- 2. A **domain** for each random variable
- 3. A conditional probability table for each variable given its parents
- The graph represents a specific **factorization** of the full **joint distribution**
- **Semantics:** \bullet Every node is **independent** of its **non-descendants**, **conditional** on its **parents**

Recap: Queries

- The most common task for a belief network is to query posterior probabilities given some observations
- Easy cases:
 - Posteriors of a single variable conditional only on parents
 - Joint distributions of variables early in a compatible variable ordering
- Typically, the observations have no straightforward relationship to the target
- This lecture: mechanical procedure for computing arbitrary queries



Factors

- The Variable Elimination algorithm exploits the factorization of a joint probability distribution encoded by a belief network in order to answer queries
- A factor is a function $f(X_1, \ldots, X_k)$ from random variables to a real number
- Input: factors representing the conditional probability tables from the belief network
 P(Leaving | Alarm)P(Smoke | Fire)P(Alarm | Tampering, Fire)P(Tampering)P(Fire)
 becomes
- $f_1(Leaving, Alarm)f_2(Smoke, Fire)f_3(Alarm, Tampering, Fire)f_4(Tampering)f_5(Fire)$ • Output: A new factor encoding the target posterior distribution
- **Output:** A **new factor** encoding the target E.g., $f_{12}(Tampering)$.

Conditional Probabilities as Factors

constraint:

$\forall v_1 \in dom(X_1), v_2 \in dom(X_2), \dots, v_n$

- - Operations on factors are not guaranteed to maintain this constraint!
 - Solution: **Don't sweat it**!
 - Operate on **unnormalized probabilities** during the computation
 - **Normalize** at the end of the algorithm to re-impose the constraint

• A conditional probability $P(Y \mid X_1, \ldots, X_n)$ is a factor $f(Y, X_1, \ldots, X_n)$ that obeys the

$$\in dom(X_n): \left[\sum_{\substack{y \in dom(Y)}} f(y, v_1, \dots, v_n)\right] = 1.$$

• Answer to a query is a factor **constructed by applying operations** to the input factors

Conditioning

Conditioning is an operation on a **single factor**

its inputs fixed

Definition:

For a factor f_1

$$\begin{aligned} &X_k \end{pmatrix}, \text{ conditioning on } X_i = v_i \text{ yields a new factor} \\ &f_2(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k) = (f_1)_{X_i = v_i} \\ &I_1, \dots, v_{i-1}, v_{i+1}, \dots, v_k \text{ in the domain of } X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k, \\ &V_{i-1}, v_{i+1}, \dots, v_k \end{pmatrix} = f_1(v_1, \dots, v_{i-1}, \mathbf{v_i}, v_{i+1}, \dots, v_k). \end{aligned}$$

such that for

$$f_1(X_1, ..., X_k)$$
, conditioning on $X_i = v_i$ yields a new factor
 $f_2(X_1, ..., X_{i-1}, X_{i+1}, ..., X_k) = (f_1)_{X_i = v_i}$
all values $v_1, ..., v_{i-1}, v_{i+1}, ..., v_k$ in the domain of $X_1, ..., X_{i-1}, X_{i+1}, ..., X_k$,
 $f_2(v_1, ..., v_{i-1}, v_{i+1}, ..., v_k) = f_1(v_1, ..., v_{i-1}, \mathbf{v_i}, v_{i+1}, ..., v_k)$.

Constructs a new factor that returns the values of the original factor with some of

Conditioning Example

Α	В	С	value
F	F	F	0.1
F	F	Т	0.88
F	Т	F	0.12
F	Т	Т	0.45
Т	F	F	0.7
Т	F	Т	0.66
Т	Т	F	0.1
Т	Т	Т	0.25

 $f_2(A, B) = f_1(A, B, C)_{C=true}$

Α	В	value
F	F	0.88
F	Т	0.45
Т	F	0.66
Т	Т	0.25

Multiplication

Multiplication is an operation on two factors

• Constructs a new factor that return factor by its arguments

Definition:

For two factors $f_1(X_1, \ldots, X_j, Y_1, \ldots, Y_k)$ multiplication of f_1 and f_2 yields a new factor

$$(f_1 \times f_2) = f_3(X_1, \dots, X_j, Y_1, \dots, Y_k, Z_1, \dots, Z_\ell)$$

such that for all values $x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_{\ell'}$

$$f_3(x_1, \dots, x_j, y_1, \dots, y_k, z_1, \dots, z_\ell) = f_1$$

Constructs a new factor that returns the product of the rows selected from each

and
$$f_2(Y_1, ..., Y_k, Z_1, ..., Z_\ell)$$
,
actor

 $(x_1, \ldots, x_j, y_1, \ldots, y_k) f 2(y_1, \ldots, y_k, z_1, \ldots, z_\ell).$

Multiplication Example

В	С	val
F	F	1.
F	Т	0
Т	F	0.
Т	Т	0.2

Α	В	value	
F	F	0.1	
F	Т	0.2	
Т	F	0.3	
Т	Т	0.4	

$f_3(A, B, C) = f_1(A, B) \times f_2(B, C)$



Α	В	С	value	
F	F	F	0.1	
F	F	Т	0	
F	Т	F	0.1	
F	Т	Т	0.05	
Т	F	F	0.3	
Т	F	Т	0	
Т	Т	F	0.2	
Т	Т	Т	0.1	

Summing Out

Summing out is an operation on a single factor

factor

Definition:

For a factor $f_1(X_1, \ldots, X_k)$, summing out a variable X_i yields a new factor

$$f_2(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k) = \left(\sum_{X_i} f_1\right)$$

such that for all values $v_1, ..., v_{i-1}, v_{i+1}, ..., v_k$ in the domain of $X_1, ..., X_{i-1}, X_{i+1}, ..., X_k$

$$f_2(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_k) = \sum_{\mathbf{v}_i \in dom(X_i)} (v_1, \dots, v_{i-1}, \mathbf{v}_i, v_{i+1}, \dots, v_k).$$

• Constructs a new factor that returns the sum over all values of a random variable of the original

Summing Out Example

Α	В	value	
F	F	0.1	
F	Т	0.2	
Т	F	0.3	
Т	Т	0.4	

$f_2(B) = \sum f_1(A, B)$ A

В	value
F	0.4
Т	0.6

• Given observations $Y_1 = v_1, \dots, Y_k = v_k$ and query variable Q, we want

$$P(Q \mid Y_1 = v_1, \dots, Y_k = v_k) = \frac{P(Q, Y_1 = v_1, \dots, Y_k = v_k)}{\sum_{q \in dom(Q)} P(Q = q, Y_1 = v_1, \dots, Y_k = v_k)}$$

- Basic idea of variable elimination: \bullet
 - 1. Condition on observations by conditioning
 - Construct joint distribution factor by **multiplication**
 - З.
 - Normalize at the end 4.
- Doing these steps in order is **correct** but not **efficient** ullet
- Efficiency comes from **interleaving** the order of operations

Variable Elimination

Remove unwanted variables (neither query nor observed) by summing out

Sums of Products

- Construct joint distribution factor by multiplication
- Remove unwanted variables (neither query nor observed) by summing out

The computationally intensive part of variable elimination is computing sums of products

Example: multiply factors $f_1(Q, A, B, C)$, $f_2(C, D, E)$; sum out A, E

- 1. $f_3(Q, A, B, C, D, E) = f_1(Q, A, B, C) \times f_2(C, D, E) : 2^6$ multiplications
- 2. $f_4(Q, B, C, D) = \sum f_3(Q, A, B, C, D, E)$: 3×16 additions

Total: **112** computations

Efficient Sums of Products

We can reduce the number of computations required by changing their order.

 $\sum f_1(Q, A, B, C) \times f_2(C, D, E)$ $= \left(\sum_{A} f_1(Q, A, B, C)\right) \times \left(\sum_{E} f_2(C, D, E)\right)$

- 1. $f_3(C,D) = \sum_E f_2(C,D,E)$: 2² additions
- 2. $f_4(Q, B, C) = \sum_A f_1(Q, A, B, C)$: 2³ additions
- 3. $f_5(Q, B, C, D) = f_3(Q, B, C) \times f_4(B, C, D) : 2^4$ multiplications

Total: 28 computations

Variable Elimination Algorithm

Input: query variable Q; set of variables Vs; observations O; factors Ps representing conditional probability tables

Fs := Psfor each X in Vs \setminus {Q} according to some elimination ordering: $Rs = \{ F \text{ in } Fs \mid F \text{ involves } X \}$ if X is observed: for each *F* in *R*s: F' = F conditioned on observed value of X $Fs = Fs \setminus \{F\} \cup \{F'\}$ else: T :=**product** of factors in Rs $N := \operatorname{sum} X$ out of T $Fs := Fs \setminus Rs \cup \{N\}$ T := **product** of factors in Fs N :=**sum** Q out of Treturn T / N

Variable Elimination Example: Conditioning

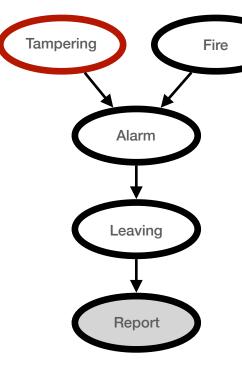
Query: P(Tampering | Smoke=true, Report=true) Variable ordering: Smoke, Report, Fire, Alarm, Leaving

P(Tampering, Fire, Alarm, Smoke, Leaving, Report) = P(Tampering)P(Fire)P(Alarm|Tampering,Fire)P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving)

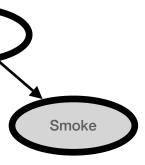
Construct **factors** for each table:

Condition on Smoke: $f_6 = (f_3)_{\text{Smoke}=\text{true}}$ { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_6 (Fire), f_4 (Leaving, Alarm), f_5 (Report, Leaving) }

Condition on Report: $f_7 = (f_5)_{\text{Report=true}}$ { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_6 (Fire), f_4 (Leaving, Alarm), f_7 (Leaving) }



- { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_3 (Smoke, Fire), f_4 (Leaving, Alarm), f_5 (Report, Leaving) }



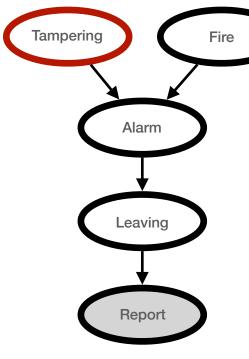
Variable Elimination Example: Elimination

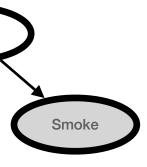
Query: P(Tampering | Smoke=true, Report=true) Variable ordering: Smoke, Report, Fire, Alarm, Leaving { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_6 (Fire), f_4 (Leaving, Alarm), f_7 (Leaving) }

Sum out Fire from **product** of f_1, f_2, f_6 : $f_8 = \sum_{\text{Fire}} (f_1 \times f_2 \times f_6)$ { f_0 (Tampering), f_8 (Tampering, Alarm), f_4 (Leaving, Alarm), f_7 (Leaving) }

Sum out Alarm from product of f_8 , f_4 : $f_9 = \sum_{\text{Alarm}} (f_8 \times f_4)$ { f_0 (Tampering), f_9 (Tampering, Leaving), f_7 (Leaving) }

Sum out Leaving from product of f_9 , f_7 : $f_{10} = \sum_{\text{Leaving}} (f_9 \times f_7)$ { f_0 (Tampering), f_{10} (Tampering) }



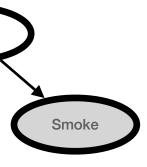


Variable Elimination Example: Normalization

Query: P(Tampering | Smoke=true, Report=true) **Variable ordering:** Smoke, Report, Fire, Alarm, Leaving { *f*₀(Tampering), *f*₁₀(Tampering) }

Product of remaining factors: $f_{11} = f_0 \times f_{10}$ { f_{11} (Tampering) }

Normalize by division: query(Tampering) = f_{11} (Tampering) / ($\sum_{\text{Tampering}} f_{11}$ (Tampering))



Alarm

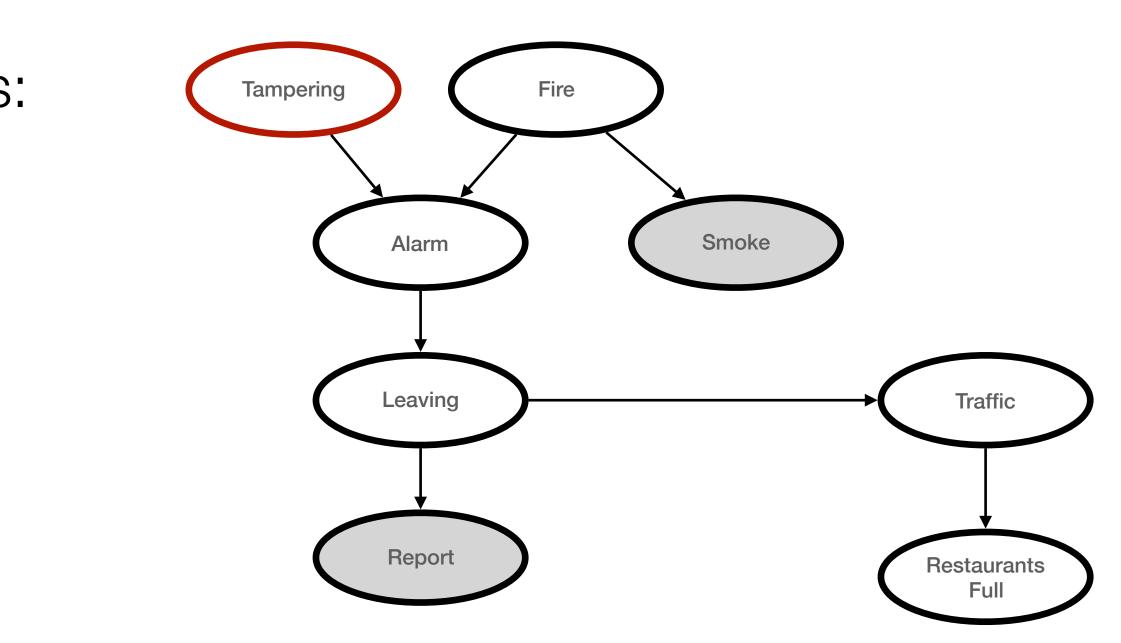
Optimizing Elimination Order

- Variable elimination exploits efficient sums of products on a factored joint distribution
- The elimination order of the variables affects the efficiency of the algorithm
- Finding an optimal elimination ordering is NP-hard
- Heuristics (rules of thumb) for good orderings:
 - Min-factor: At every stage, select the variable that constructs the smallest new factor
 - **Problem-specific** heuristics

Optimization: Pruning

- that are neither observed nor queried
 - Summing them out for **free**
- We can **repeat** this process:

• The structure of the graph can allow us to drop leaf nodes



Optimization: Preprocessing

the same variables, we can **preprocess** our graph; e.g.:

- 1. Precompute the joint distribution of all the variables we will observe and/or query
- 2. Precompute **conditional distributions** for our exact queries

Finally, if we know that we are always going to be observing and/or querying

Summary

- Variable elimination is an algorithm for answering queries based on a \bullet belief network
- \bullet posterior distribution
 - Conditioning
 - Multiplication 2.
 - 3. Summing out
- **Distributes** operations more efficiently than taking full product and then summing out
 - **Optimal** order of operations is **NP-hard** to compute

Operates by using three **operations** on **factors** to reduce graph to a single

Additional optimization techniques: heuristic ordering, pruning, precomputation