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Recap: Belief Networks
Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a random variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its parents 

• The graph represents a specific factorization of the full joint distribution 

• Semantics:  
Every node is independent of its non-descendants, conditional on its parents
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Recap: Queries
• The most common task for a belief network is to query 

posterior probabilities given some observations 

• Easy cases:  

• Posteriors of a single variable conditional only on 
parents 

• Joint distributions of variables early in a compatible 
variable ordering 

• Typically, the observations have no straightforward 
relationship to the target 

• This lecture: mechanical procedure for computing arbitrary 
queries
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Factors
• The Variable Elimination algorithm exploits the factorization of a joint probability 

distribution encoded by a belief network in order to answer queries 

• A factor is a function  from random variables to a real number 

• Input: factors representing the conditional probability tables from the belief network 

 

              becomes  

 
• Output: A new factor encoding the target posterior distribution 

E.g., .

f(X1, . . . , Xk)

P(Leaving ∣ Alarm)P(Smoke ∣ Fire)P(Alarm ∣ Tampering, Fire)P(Tampering)P(Fire)

f1(Leaving, Alarm)f2(Smoke, Fire)f3(Alarm, Tampering, Fire)f4(Tampering)f5(Fire)

f12(Tampering)



Conditional Probabilities 
as Factors

• A conditional probability  is a factor  that obeys the 
constraint: 

. 

• Answer to a query is a factor constructed by applying operations to the input factors 

• Operations on factors are not guaranteed to maintain this constraint! 

• Solution: Don't sweat it! 

• Operate on unnormalized probabilities during the computation 

• Normalize at the end of the algorithm to re-impose the constraint

P(Y ∣ X1, . . . , Xn) f(Y, X1, . . . , Xn)

∀v1 ∈ dom(X1), v2 ∈ dom(X2), …, vn ∈ dom(Xn) : ∑
y∈dom(Y)

f(y, v1, …, vn) = 1



Conditioning
Conditioning is an operation on a single factor  

• Constructs a new factor that returns the values of the original factor with some of 
its inputs fixed 

Definition: 
For a factor , conditioning on  yields a new factor  

  

such that for all values  in the domain of , 

.

f1(X1, . . . , Xk) Xi = vi

f2(X1, …Xi−1, Xi+1, …, Xk) = ( f1)Xi=vi

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = f1(v1, …, vi−1, vi, vi+1, …, vk)



Conditioning Example
 f2(A, B) = f1(A, B, C)C=true

A B C value
F F F 0.1

F F T 0.88
F T F 0.12
F T T 0.45
T F F 0.7
T F T 0.66
T T F 0.1
T T T 0.25

A B value

F F 0.88

F T 0.45

T F 0.66

T T 0.25



Multiplication
Multiplication is an operation on two factors 

• Constructs a new factor that returns the product of the rows selected from each 
factor by its arguments 

Definition: 
For two factors  and ,  
multiplication of  and  yields a new factor  

  

such that for all values , 

.

f1(X1, …, Xj, Y1, …, Yk) f2(Y1, …, Yk, Z1, …, Zℓ)
f1 f2

( f1 × f2) = f3(X1, …, Xj, Y1, …, Yk, Z1, …, Zℓ)

x1, …, xj, y1, …, yk, z1, …, zℓ

f3(x1, …, xj, y1, …, yk, z1, …, zℓ) = f1(x1, …, xj, y1, …, yk)f2(y1, …, yk, z1, …, zℓ)



Multiplication Example
 f3(A, B, C) = f1(A, B) × f2(B, C)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B C value

F F 1.0

F T 0

T F 0.5

T T 0.25

A B C value
F F F 0.1

F F T 0
F T F 0.1
F T T 0.05
T F F 0.3
T F T 0
T T F 0.2
T T T 0.1



Summing Out
Summing out is an operation on a single factor 

• Constructs a new factor that returns the sum over all values of a random variable of the original 
factor 

Definition: 
For a factor , summing out a variable  yields a new factor 

  

such that for all values  in the domain of , 

. 

f1(X1, …, Xk) Xi

f2(X1, …, Xi−1, Xi+1, …, Xk) = ∑
Xi

f1

v1, …, vi−1, vi+1, …, vk X1, …Xi−1, Xi+1, …, Xk

f2(v1, …, vi−1, vi+1, …, vk) = ∑
vi∈dom(Xi)

(v1, …, vi−1, vi, vi+1, …, vk)



Summing Out Example
f2(B) = ∑

A

f1(A, B)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B value
F 0.4
T 0.6



Variable Elimination
• Given observations  and query variable , we want 

.     

• Basic idea of variable elimination: 

1. Condition on observations by conditioning 

2. Construct joint distribution factor by multiplication 

3. Remove unwanted variables (neither query nor observed) by summing out 

4. Normalize at the end 

• Doing these steps in order is correct but not efficient 

• Efficiency comes from interleaving the order of operations

Y1 = v1, …, Yk = vk Q

P(Q ∣ Y1 = v1, …, Yk = vk) =
P(Q, Y1 = v1, …, Yk = vk)

∑q∈dom(Q) P(Q = q, Y1 = v1, …, Yk = vk)



Sums of Products

The computationally intensive part of variable elimination is computing 
sums of products 

Example: multiply factors , ; sum out  

1.   

2.  

Total: 112 computations

f1(Q, A, B, C) f2(C, D, E) A, E

f3(Q, A, B, C, D, E) = f1(Q, A, B, C) × f2(C, D, E) : 26 multiplications

f4(Q, B, C, D) = ∑
A,E

f3(Q, A, B, C, D, E) : 3 × 16 additions

2. Construct joint distribution factor by multiplication 
3. Remove unwanted variables (neither query nor observed) by summing out



Efficient Sums of Products
We can reduce the number of computations required by changing their order. 

  

1.    

2.    

3.    

Total: 28 computations

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E)

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E))
f3(C, D) = ΣE f2(C, D, E) : 22 additions

f4(Q, B, C) = ΣA f1(Q, A, B, C) : 23 additions

f5(Q, B, C, D) = f3(Q, B, C) × f4(B, C, D) : 24 multiplications



Variable Elimination Algorithm
Input: query variable Q; set of variables Vs; observations O; factors Ps representing conditional 
probability tables 

Fs := Ps 
for each X in Vs \ {Q} according to some elimination ordering: 
    Rs = { F in Fs | F involves X } 
    if X is observed: 
        for each F in Rs: 
            F' = F conditioned on observed value of X 
            Fs = Fs \ {F} ⋃ {F'} 
    else: 
        T := product of factors in Rs 
        N := sum X out of T 
        Fs := Fs \ Rs ⋃ {N} 
T := product of factors in Fs  
N := sum Q out of T  
return T / N



Variable Elimination Example: 
Conditioning

Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving 

P(Tampering, Fire, Alarm, Smoke, Leaving, Report) =  
P(Tampering)P(Fire)P(Alarm|Tampering,Fire)P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving) 

Construct factors for each table: 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f3(Smoke,Fire), f4(Leaving,Alarm), f5(Report,Leaving) } 

Condition on Smoke:  f6 = (f3)Smoke=true 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f5(Report,Leaving) } 

Condition on Report: f7 = (f5)Report=true  
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f7(Leaving) }

Report

FireTampering

Alarm

Leaving

Smoke



Variable Elimination Example:  
Elimination

Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f7(Leaving) } 

Sum out Fire from product of f1,f2,f6:  f8 = ∑Fire (f1 ⨉ f2 ⨉ f6) 
{ f0(Tampering), f8(Tampering,Alarm), f4(Leaving,Alarm), f7(Leaving) } 

Sum out Alarm from product of f8, f4:  f9 = ∑Alarm (f8 ⨉ f4) 
{ f0(Tampering), f9(Tampering,Leaving), f7(Leaving) } 

Sum out Leaving from product of f9, f7: f10 = ∑Leaving (f9 ⨉ f7) 
{ f0(Tampering), f10(Tampering) }

Report

FireTampering

Alarm
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Smoke



Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving  
{ f0(Tampering), f10(Tampering) } 

Product of remaining factors: f11 = f0 ⨉ f10  
{ f11(Tampering) } 

Normalize by division:  
query(Tampering) = f11(Tampering) / (∑Tampering f11(Tampering))

Variable Elimination Example:   
Normalization
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Optimizing Elimination Order
• Variable elimination exploits efficient sums of products on a factored joint distribution 

• The elimination order of the variables affects the efficiency of the algorithm 

• Finding an optimal elimination ordering is NP-hard 

• Heuristics (rules of thumb) for good orderings: 

• Min-factor: At every stage, select the variable that constructs the 
smallest new factor 

• Problem-specific heuristics



Optimization: Pruning
• The structure of the graph can allow us to drop leaf nodes 

that are neither observed nor queried 

• Summing them out for free 

• We can repeat this process:

Report

FireTampering

Alarm

Leaving

Smoke

Traffic

Restaurants 
Full



Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying 
the same variables, we can preprocess our graph; e.g.: 

1. Precompute the joint distribution of all the variables we will observe 
and/or query 

2. Precompute conditional distributions for our exact queries



Summary
• Variable elimination is an algorithm for answering queries based on a 

belief network 

• Operates by using three operations on factors to reduce graph to a single 
posterior distribution 

1. Conditioning 

2. Multiplication 

3. Summing out 

• Distributes operations more efficiently than taking full product and then 
summing out 

• Optimal order of operations is NP-hard to compute 

• Additional optimization techniques: heuristic ordering, pruning, precomputation


