Independence in Belief Networks

CMPUT 366: Intelligent Systems

P&M §8.4

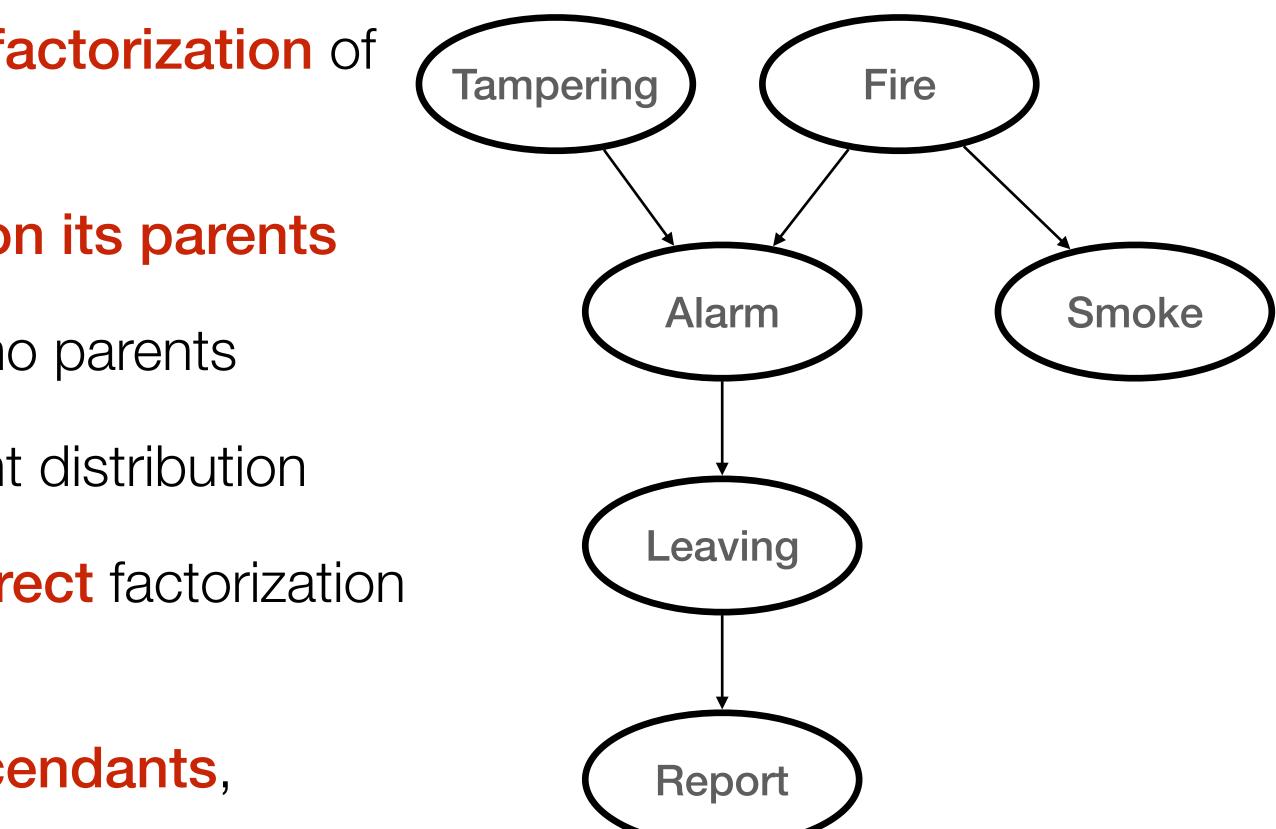
Lecture Outline

- 1. Recap
- 2. Belief Networks as Factorings
- 3. Independence in Belief Networks

Recap: Belief Network Semantics

- Graph representation represents a specific factorization of the full joint distribution
 - Distribution on each node conditional on its parents
 - Marginal distributions on nodes with no parents
 - **Product** of these distributions is the joint distribution
 - Not every possible factorization is a correct factorization
- Semantics:

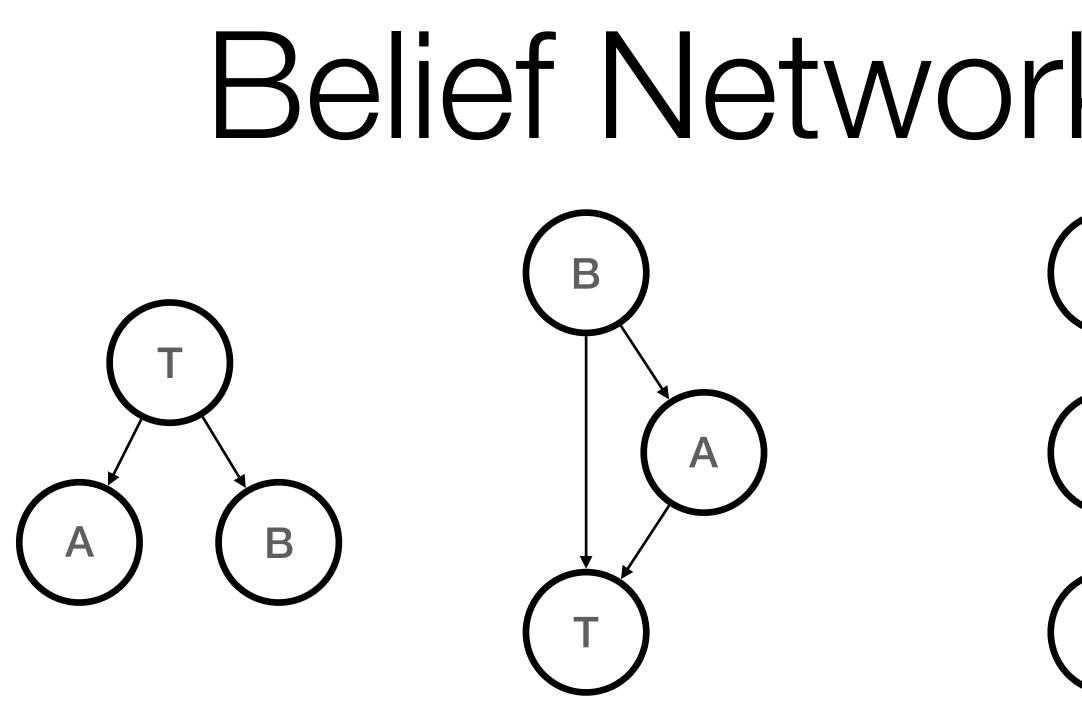
Every node is **independent** of its **non-descendants**, **conditional only** on its **parents**



Recap: Mechanically Constructing Belief Networks

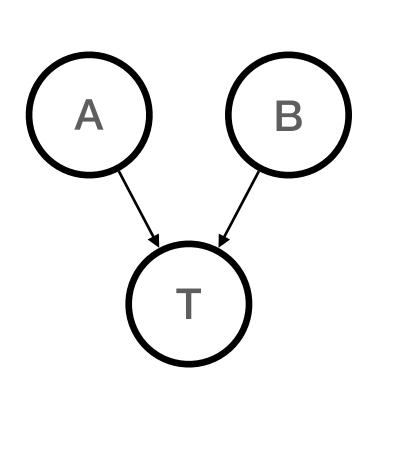
Given a **joint distribution** we can mechanically construct a **correct** encoding:

- 1. Order the variables X_1, X_2, \ldots, X_n and associate each one with a **node**
- 2. For each variable X_i :
 - Choose a minimal set of variables $parents(X_i)$ from (i) $X_1, ..., X_{i-1}$ such that $P(X_i \mid parents(X_i)) = P(X_i \mid X_1, ..., X_{i-1})$
 - i.e., conditional on $parents(X_i)$, X_i is independent of all the other variables that are earlier in (ii)the ordering
 - (iii) Add an **arc** from each variable in $parents(X_i)$ to X_i
 - (iv) Label the node for X_i with the **conditional probability table** $P(X_i \mid parents(X_i))$



- A joint distribution can be factored in **multiple** different ways
 - Every variable ordering induces at least one correct factoring (Why?)
- A belief network represents a single factoring •
- Some factorings are correct, some are incorrect

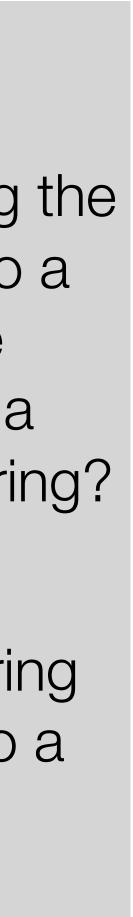
Belief Networks as Factorings



B

Questions:

- Does applying the Chain Rule to a given variable ordering give a unique factoring?
- Does a given 2. variable ordering correspond to a unique Belief Network?



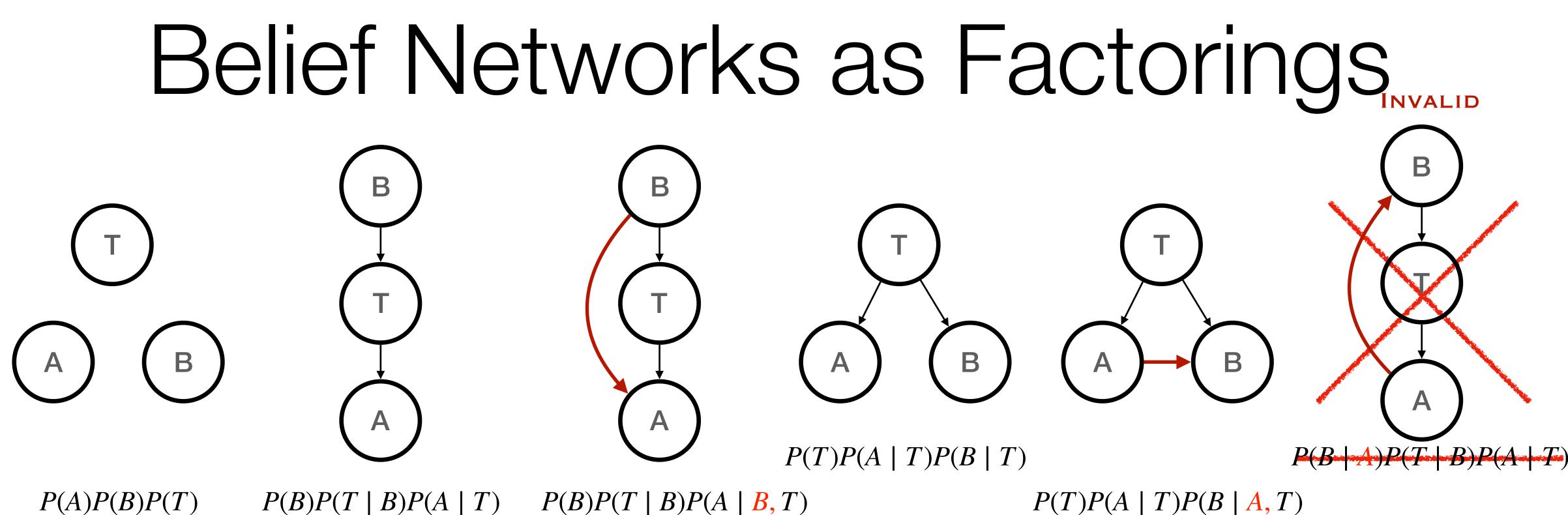
Correct and Incorrect Factorings in the Clock Scenario

Which of the following are **correct** factorings of the joint distribution P(A, B, T) in the Clock Scenario?

- 1. P(A)P(B)P(T)
- 2. $P(A)P(B \mid A)P(T \mid A, B)$

Which of the above are a good factoring for the Clock Scenario? Why?

Chain rule(A,B,T): $P(A)P(B \mid A)P(T \mid A,B)$ 3. P(T | P(B | T) P(A | T) Chain rule(T,B,A): P(T) P(B | T,A) P(A | T)

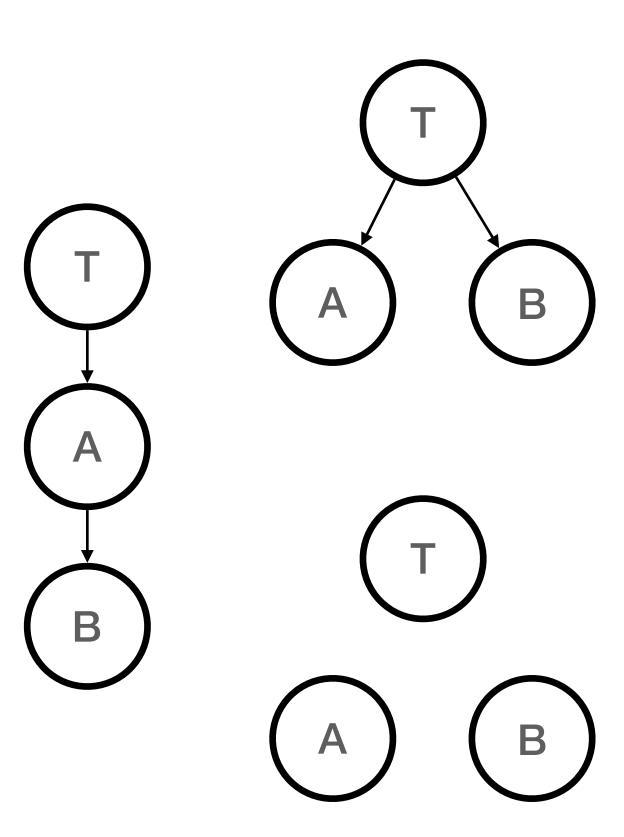


Question: What **factoring** is represented by each network?

Conditional independence guarantees are represented in belief networks by the absence of edges.

Variations on the Clock Scenario

- A valid belief is only "correct" or "incorrect" with respect to a given joint distribution
- A **single network** may be correct in one scenario and incorrect in another
- **Telephone Clock Scenario:** Alice looks at the clock, then tells Bob the time over a noisy phone connection
- Desert Islands Clock Scenario: Alice is on Island A.
 Bob is on Island B. The clock is on Island C. Alice and Bob cannot see or hear each other, or the clock.



Independence in a Joint Distribution

Question: How can we answer questions about independence using the joint distribution?

Examples using P(A, B, T):

- Is A independent of B?
- $P(a \mid b) = P(a)$ for all $a \in dom(A)$, $b \in dom(B)$?
- 2. Is *T* independent of *A*?
 - $P(t \mid a) = P(t)$ for all $a \in dom(A)$, $t \in dom(T)$?
- 3. Is A independent of B given T?
 - $P(a \mid b, t) = P(a \mid t)$ for all $a \in dom(A)$, $b \in dom(B)$, $t \in \text{dom}(T)$?

$$P(A, B) = \sum_{t \in T} P(A, B, T)$$

$$P(A, T) = \sum_{b \in B} P(A, B = A)$$

$$P(B, T) = \sum_{a \in A} P(A = a, B)$$

$$P(A) = \sum_{b \in B} P(A, B = A)$$

$$P(B) = \sum_{a \in A} P(A = a, B)$$

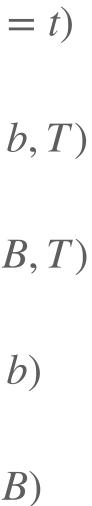
$$P(T) = \sum_{a \in A} P(A = a, T)$$

$$P(A \mid B, T) = \frac{P(A, B, T)}{P(B, T)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid T) = \frac{P(A, T)}{P(T)}$$

$$P(T \mid A) = \frac{P(A, T)}{P(A)}$$



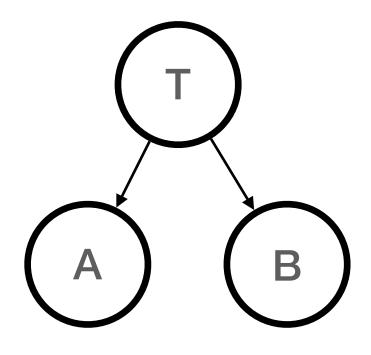
Independence in a Belief Network

Belief Network Semantics:

Every node is independent of its non-descendants, conditional only on its parents

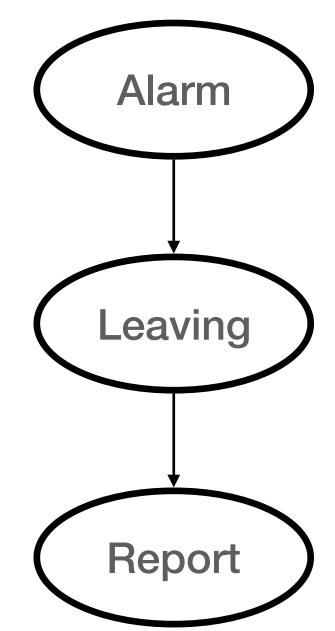
- answer questions about independence
- Examples using the belief network at right: •
 - Is **T** independent of **A**?
 - 2. Is A independent of B given T?
 - 3. Is A independent of B?

We can use the semantics of a correct belief network to



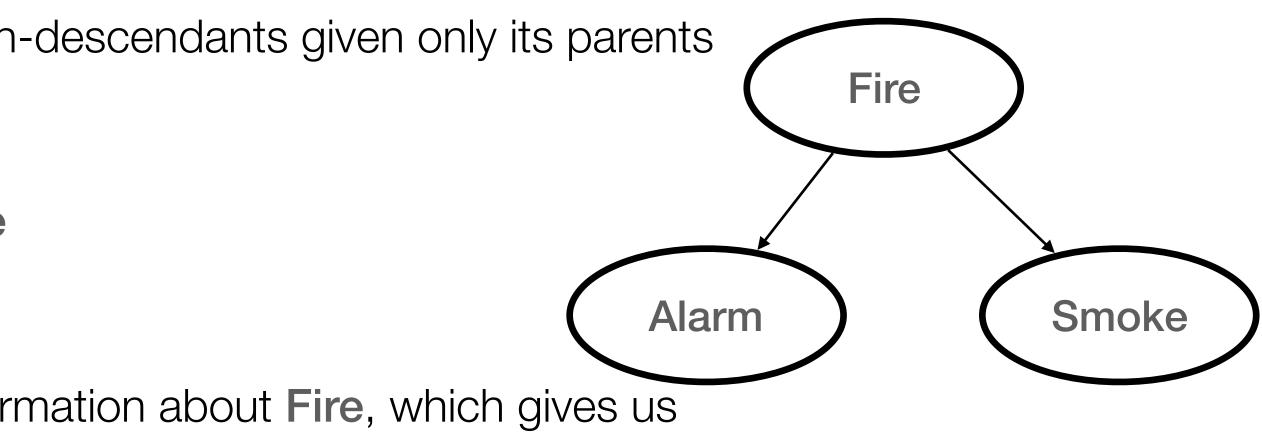
Chain

- **Question:** Is **Report** independent of **Alarm** given **Leaving**? ullet
 - Intuitively: The only way learning **Report** tells us about **Alarm** is because it ullettells us about Leaving; but Leaving has already been observed
 - *Formally:* **Report** is independent of its non-descendants given only its parents \bullet
 - Leaving is Report's parent
 - Alarm is a non-descendant of **Report** •
- **Question:** Is **Report** independent of **Alarm**?
 - Intuitively: Learning Report gives us information about Leaving, which gives ulletus information about Alarm
 - Formally: Report is independent of Alarm given Report's parents; but the question is about **marginal** independence



Common Ancestor

- **Question:** Is **Alarm** independent of **Smoke** given **Fire**?
 - Intuitively: The only way learning Smoke tells us about Alarm is because it lacksquaretells us about **Fire**; but **Fire** has already been observed
 - Formally: Alarm is independent of its non-descendants given only its parents lacksquare
 - Fire is Alarm's parent
 - **Smoke** is a non-descendant of **Fire**
- **Question:** Is **Alarm** independent of **Smoke**?
 - Intuitively: Learning Smoke gives us information about Fire, which gives us lacksquareinformation about Alarm
 - Formally: Alarm is independent of Smoke given only Alarm's parents; but the question is about **marginal independence**



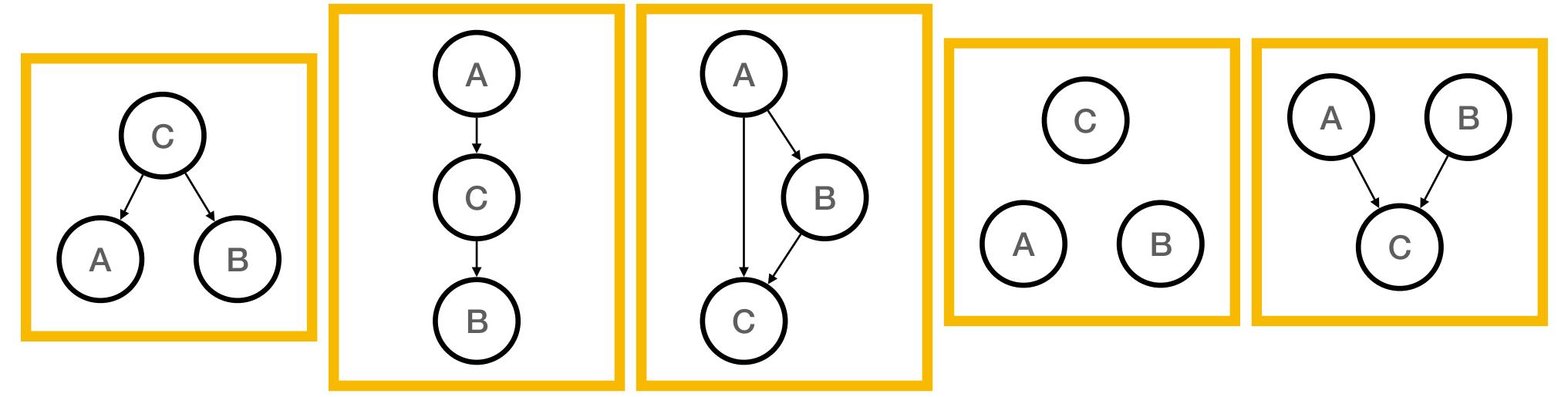
- **Question:** Is **Tampering** independent of **Fire** given **Alarm**?
 - Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely. If we then learn that **Tampering** is false, that makes it less likely that the **Alarm** is ringing because of a Fire.
 - Formally: Tampering is independent of Fire given only Tampering's parents; but we are conditioning on one of Tampering's **descendants**
 - Conditioning on a **common descendant** can make independent variables dependent through the **explaining away** effect
- **Question:** Is **Tampering** independent of **Fire**?
 - Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening
 - Formally: Tampering is independent of Fire given Tampering's parents
 - **Tampering** has no parents, so we are always conditioning on them
 - Fire is a non-descendant of Tampering

Common Descendant

Tampering Fire Alarm

Correctness of a Belief Network

A belief network is a **correct** representation of a joint distribution when the belief network answers "yes" to an independence question only if the joint distribution answers "yes" to the same question.



Questions:

- 2.

Is A independent of B in the above belief networks?

Is A independent of B given C in the above belief networks?

Summary

- A belief network represents a specific **factoring** of a joint distribution
 - More than one belief network can correctly represent a joint distribution
 - A given belief network may be correct for one underlying joint distribution and incorrect for another
- A **good** belief network is one that encodes as many **true** conditional independence relationships as possible
- It is possible to read the conditional independence guarantees made by a belief network directly from its graph structure