Heuristic Search: Part II

CMPUT 366: Intelligent Systems

P&M §3.6

Definition:

of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:

cost of the cheapest path from *n* to a goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

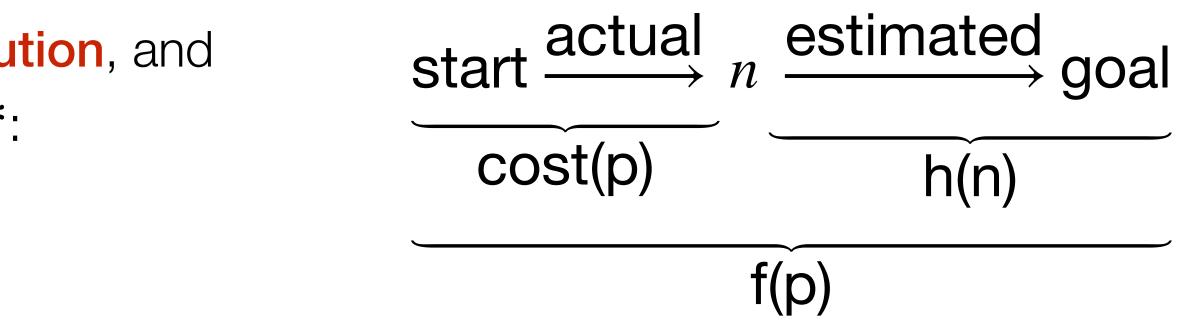
Recap: Heuristics

A heuristic function is a function h(n) that returns a non-negative estimate

A heuristic function is **admissible** if h(n) is always less than or equal to the

- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When h is **admissible**, $p^* = \langle s, \dots, n, \dots, g \rangle$ is a **solution**, and $p = \langle s, ..., n \rangle$ is a **prefix** of p^* :
 - $f(p) \leq \operatorname{cost}(p^*)$

Recap: A* Search



Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := $\{ \langle s \rangle \mid s \text{ is a start node} \}$ while frontier is not empty: **select** heuristic minimizing path $< n_1, n_2, ..., n_k >$ from frontier **remove** $< n_1, n_2, \dots, n_k >$ from *frontier* if $goal(n_k)$:

return < $n_1, n_2, ..., n_k$ > for each neighbour *n* of n_k : **add** $< n_1, n_2, ..., n_k, n >$ to frontier end while

i.e., $f(\langle n_1, n_2, ..., n_k \rangle) \leq f(p)$ for all other paths $p \in$ frontier

A* Theorem

Theorem:

If there is a solution, A^{*} using heuristic function h always returns an **optimal** solution (in finite time), if

- 1. The branching factor is finite,
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. *h* is an **admissible** heuristic.

Proof:

- contains a prefix of the optimal solution

The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier

A* Theorem Proofs: A Lexicon

An admissible heuristic: h(n) $f(\langle n_1, \dots, n_k \rangle) = \operatorname{cost}(\langle n_1, \dots, n_k \rangle) + h(n_k)$ A start node: S A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A prefix of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

A* Theorem: Optimality

Proof part 2: Optimality (no g is removed before p^*)

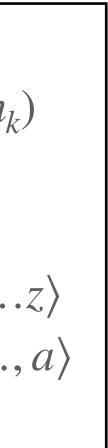
- 1. f(g) = cost(g) and $f(p^*) = cost(p^*)$
 - (i) $f(\langle n_1, ..., n_k \rangle) = cost(\langle n_1, ..., n_k \rangle) + h(n_k)$, and h(z) = 0

2. $f(p') \le f(g)$

- (i) $f(\langle s, ..., a \rangle) = \operatorname{cost}(\langle s, ..., a \rangle) + h(a)$
- (iii) $h(a) \leq \operatorname{cost}(\langle a, b, \dots, z \rangle)$
- (iv) $f(p') \le f(p^*) < f(g)$

An admissible heuristic: h(n) $f(\langle n_1, \dots, n_k \rangle) = \operatorname{cost}(\langle n_1, \dots, n_k \rangle) + h(n_k)$ A start node: *s* A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A **prefix** of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

(ii) $f(\langle s, ..., a, b, ..., z \rangle) = cost(\langle s, ..., a, b, ..., z \rangle) + h(z) = cost(\langle s, ..., a \rangle) + cost(a, b, ..., z \rangle)$



Comparing Heuristics

- Suppose that we have two **admissible** heuristics, h_1 and h_2
- Suppose that for every node n, $h_2(n) \ge h_1(n)$

Question: Which heuristic is better for search?

Dominating Heuristics

Definition:

A heuristic h_2 dominates a heuristic h_1 if

1. $\forall n : h_2(n) \ge h_1(n)$, and

2.
$$\exists n : h_2(n) > h_1(n)$$
.

Theorem:

If h_2 dominates h_1 , and both heuristics are admissible, then A^{*} using h_2 will never remove more paths from the frontier than A^{*} using h_1 .

Question:

Which admissible heuristic dominates all other admissible heuristics?

A* Analysis

For a search graph with *finite* maximum branch factor b and *finite* maximum path length *m...*

- What is the worst-case **space complexity** of A*? 1. [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. What is the worst-case time complexity of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

Question: If A* has the same space and time complexity as least cost first search, then what is its advantage?

Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- A* considers both path cost and heuristic cost when selecting paths: f(p) = cost(p) + h(p)
- Admissible heuristics guarantee that A* will be optimal
- Admissible heuristics can be built from relaxations of the original problem
- The more accurate the heuristic is, the fewer the paths A* will explore

or, How I Learned to Stop Worrying and Love Depth First Search

CMPUT 366: Intelligent Systems

Branch & Bound

P&M §3.7-3.8

Lecture Outline

- 1. Recap / Heuristic Search Part II
- 2. Cycle Pruning
- 3. Branch & Bound
- 4. Exploiting Search Direction

- Even on **finite graphs**, depth-first search may not be complete, because it can get trapped in a cycle.
- A search algorithm can prune any path that ends in a node already on the path without missing an optimal solution (**Why?**)

Cycle Pruning

Questions:

- Is depth-first search on with cycle pruning **complete** for finite graphs?
- 2. What is the **time complexity** for cycle checking in depth-first search?
- What is the **time** 3. **complexity** for cycle checking in breadth-first search?

Cycle Pruning Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := $\{ \langle s \rangle \mid s \text{ is a start node} \}$ while *frontier* is not empty: select the newest path $< n_1, n_2, ..., n_k >$ from frontier **remove** <*n*₁, *n*₂, ..., *n_k*> from *frontier* if $n_k \neq n_j$ for all $1 \leq j < k$: if $goal(n_k)$: **return** <*n*₁, *n*₂, ..., *n*_k> for each neighbour *n* of n_k : **add** <*n*₁, *n*₂, ..., *n_k*, *n*> to frontier end while

Heuristic Depth First Search

Heuristic Depth First

Space
O(mb)ComplexityHeuristic
Usage

Optimal? No

A*	Branch & Bound
O(b ^m)	O(mb)
Optimal	Optimal (if bound low enough)
Yes	Yes (if bound high enough)

- The f(p) function provides a **path-specific lower bound** on solution cost starting from *p*
- Idea: Maintain a global upper bound on solution cost also lacksquare
 - Then prune any path whose lower bound exceeds the upper bound
- **Question:** Where does the upper bound come from?
 - **Cheapest** solution found so far ullet
 - Before solutions found, specified on entry \bullet
 - Can increase the global upper bound iteratively (as in iterative deepening search)

Branch & Bound

Branch & Bound Algorithm

Input: a *graph*; a set of *start nodes*; a *goal* function; heuristic h(n); bound₀

frontier := { <s> | s is a start node} bound := bound₀ best := Ø **while** *frontier* is not empty: **select** the newest path $< n_1, n_2, ..., n_k >$ from *frontier* **remove** <*n*₁, *n*₂, ..., *n_k*> from *frontier* if $cost(< n_1, n_2, ..., n_k >) + h(n_k) \le bound$: if $goal(n_k)$: bound := $cost(<n_1, n_2, ..., n_k>)$ best := <n₁, n₂, ..., n_k> else: for each neighbour *n* of n_k : **add** <*n*₁, *n*₂, ..., *n_k*, *n*> to frontier end while return best

Branch & Bound Analysis

- will explore no more paths than A* (**Why?**)
- cost paths, but still similar time-complexity to A*
 - \bullet was pruned

• If *bound*₀ is set to just above the optimal cost, branch & bound

• With **iterative increasing** of *bound*₀, will re-explore some lower-**Question:** How much should the bound get increased by?

Iteratively increase bound to the **lowest-f-value** node that

• Worse than A* by no more than a linear factor of m, by the same argument as for iterative deepening search

Exploiting Search Direction

- When we care about finding the path to a known goal node, we can search forward, but we can often search backward
- Given a search graph G=(N,A), known goal node g, and set of start nodes S, can construct a **reverse search problem** $G=(N, A^r)$:
 - Designate g as the start node

2.
$$A^r = \{ < n_2, n_1 > | < n_1, n_2 > \}$$

3. $goal^{r}(n) = True \text{ if } n \in S$ (i.e., if *n* is a start node of the original problem)

 $\in A \}$

Questions:

- When is this **useful**?
- 2. When is this **infeasible**?

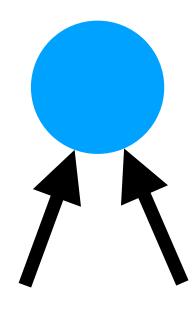
Reverse Search

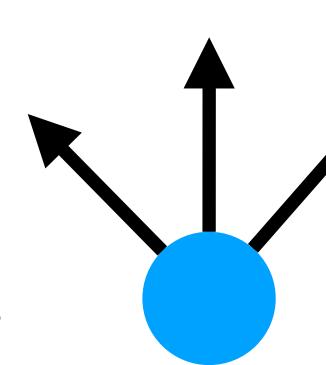
Definitions:

- Forward branch factor: Max Notation: b
 - Time complexity of forward search: $O(b^m)$
- 2. Reverse branch factor: Maximum number of incoming neighbours Notation: r
 - Time complexity of reverse search: $O(r^m)$

When the reverse branch factor is **smaller** than the forward branch factor, reverse search is more **time-efficient**.

1. Forward branch factor: Maximum number of outgoing neighbours





Bidirectional Search

- Idea: Search backward from from goal and forward from start **simultaneously**
- Time complexity is **exponential in path length**, so exploring half the path length is an exponential improvement
 - Even though must explore half the path length twice
- Main problems: ullet
 - **Ensuring** that the frontiers meet lacksquare
 - Checking that the frontiers have met

Questions:

What bidirectional **combinations** of search algorithm make sense?

- Breadth first + Breadth first?
- Depth first + Depth first?
- Breadth first + Depth first?

Summary

- first search on finite graphs
 - large or infinite graphs...
- first search

• Cycle pruning can guarantee the completeness of depth-

• Although depth first search is really most useful on very

 Branch & bound combines the optimality guarantee and **heuristic efficiency** of A* with the space efficiency of depth-

Tweaking the **direction of search** can yield efficiency gains