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Logistics

• NO LAB THIS WEEK 

• Assignment #1 released next week



Recap: Graph Search
• Many AI tasks can be represented as search problems 

• A single generic graph search algorithm can then solve 
them all! 

• A search problem consists of states, actions, start states, a 
successor function, a goal function, optionally a cost 
function 

• Solution quality can be represented by labelling arcs of the 
search graph with costs



Recap: Generic Graph 
Search Algorithm

Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node}  
while frontier is not empty: 
    select a path <n1, n2, ..., nk> from frontier  
    remove <n1, n2, ..., nk> from frontier  
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk:               (i.e., expand node nk) 
        add <n1, n2, ..., nk, n> to frontier  
end while 

• Which value is selected from the frontier defines the search strategy

Problem Solving by Graph Searching
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Lecture Outline
1. Logistics & Recap 

2. Properties of Algorithms and Search Graphs 

3. Depth First Search 

4. Breadth First Search 

5. Iterative Deepening Search 

6. Least Cost First Search 



Algorithm Properties
What properties of algorithms do we want to analyze? 

• A search algorithm is complete if it is guaranteed to find a solution within a 
finite amount of time whenever a solution exists. 

• The time complexity of a search algorithm is a measure of how much 
time the algorithm will take to run, in the worst case. 

• In this section we measure by number of paths added to the frontier. 

• The space complexity of a search algorithm is a measure of how much 
space the algorithm will use, in the worst case.  

• We measure by maximum number of paths in the frontier.



Search Graph Properties
What properties of the search graph do algorithmic properties depend on? 

• Forward branch factor: Maximum number of neighbours  
Notation: b 

• Maximum path length.  (Could be infinite!)  
Notation: m 

• Presence of cycles 

• Length of the shortest path to a goal node



Depth First Search
Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node}  
while frontier is not empty: 
    select the newest path <n1, n2, ..., nk> from frontier  
    remove <n1, n2, ..., nk> from frontier  
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk: 
        add <n1, n2, ..., nk, n> to frontier 
end while

Question: 

What data structure for the 
frontier implements this search 
strategy?



Depth First Search
Depth-first search always removes one of the longest paths from the frontier. 

Example: 
Frontier: [p1, p2, p3, p4] 
successors(p1) = {n1, n2, n3} 

What happens? 

1. Remove p1; test p1 for goal 

2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to front of frontier 

3. New frontier: [<p1,n1>, <p1,n2>, <p1,n3>, p2, p3, p4] 

4. p2 is selected only after all paths starting with p1 have been explored 

Question: When is <p1,n3> selected?



Depth First Search Analysis

For a search graph with maximum branch factor b and 
maximum path length m... 

1. What is the worst-case time complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends] 

2. When is depth-first search complete? 

3. What is the worst-case space complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends]



When to Use 
Depth First Search

• When is depth-first search appropriate? 

• Memory is restricted 

• All solutions at same approximate depth 

• Order in which neighbours are searched can be tuned to 
find solution quickly 

• When is depth-first search inappropriate? 

• Infinite paths exist 

• When there are likely to be shallow solutions 

• Especially if some other solutions are very deep



Breadth First Search
Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node}  
while frontier is not empty: 
    select the oldest path <n1, n2, ..., nk> from frontier  
    remove <n1, n2, ..., nk> from frontier  
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk: 
        add <n1, n2, ..., nk, n> to frontier 
end while

Question: 

What data structure for the 
frontier implements this search 
strategy?



Breadth First Search
Breadth-first search always removes one of the shortest paths 
from the frontier. 

Example: 
Frontier: [p1, p2, p3, p4] 
successors(p1) = {n1, n2, n3} 

What happens? 

1. Remove p1; test p1 for goal 

2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to end of frontier: 

3. New frontier: [p2, p3, p4, <p1,n1>, <p1,n2>, <p1,n3>,] 

4. p2 is selected next



Breadth First Search Analysis

For a search graph with maximum branch factor b and 
maximum path length m... 

1. What is the worst-case time complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends] 

2. When is breadth-first search complete? 

3. What is the worst-case space complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends]



When to Use 
Breadth First Search

• When is breadth-first search appropriate? 

• When there might be infinite paths  

• When there are likely to be shallow solutions, or 

• When we want to guarantee a solution with fewest arcs 

• When is breadth-first search inappropriate? 

• Large branching factor 

• All solutions located deep in the tree 

• Memory is restricted



Comparing DFS vs. BFS

• Can we get the space benefits of depth-first search without giving up completeness? 

• Run depth-first search to a maximum depth 

• then try again with a larger maximum 

• until either goal found or graph completely searched

Depth-first Breadth-first

Complete? Only for finite 
graphs Complete

Space  
complexity O(mb) O(bm)

Time 
complexity O(bm) O(bm)



Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function 

for max_depth from 1 to ∞: 
    Perform depth-first search to a maximum depth max_depth 
end for 



Iterative Deepening Search
Input: a graph; a set of start nodes; a goal function 

more_nodes := True 
while more_nodes: 
    frontier := { <s> | s is a start node}     
    for max_depth from 1 to ∞: 
        more_nodes := False 
        while frontier is not empty:  
            select the newest path <n1, n2, ..., nk> from frontier 
            remove <n1, n2, ..., nk> from frontier 
            if goal(nk):  
                return <n1, n2, ..., nk> 
            if k < max_depth: 
                for each neighbour n of nk: 
                    add <n1, n2, ..., nk, n> to frontier 
            else if nk has neighbours: 
                more_nodes := True



Iterative Deepening Search 
Analysis

For a search graph with maximum branch factor b and 
maximum path length m... 

1. What is the worst-case time complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends] 

2. When is iterative deepening search complete? 

3. What is the worst-case space complexity? 

• [A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends]



When to Use 
Iterative Deepening Search

• When is iterative deepening search appropriate? 

• Memory is limited, and 

• Both deep and shallow solutions may exist 

• or we prefer shallow ones 

• Tree may contain infinite paths



Optimality

Definition: 
An algorithm is optimal if it is guaranteed to return an optimal (i.e., 
minimal-cost) solution first. 

Question: Which of the three algorithms presented so far is optimal?  
Why?



Least Cost First Search

• None of the algorithms described so far is guided by arc costs 

• BFS and IDS are implicitly guided by path length, which can be the 
same for uniform-cost arcs 

• They return a path to a goal node as soon as they happen to blunder 
across one, but it may not be the optimal one 

• Least Cost First Search is a search strategy that is guided by arc costs 



Least Cost First Search

Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node}  
while frontier is not empty: 
    select the cheapest path <n1, n2, ..., nk> from frontier  
    remove <n1, n2, ..., nk> from frontier  
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk: 
        add <n1, n2, ..., nk, n> to frontier 
end while

Question: 

What data structure for the 
frontier implements this search 
strategy?

i.e., cost(<n1, n2, ..., nk>) ≤ cost(p) 
for all other paths p ∈ frontier



Least Cost First Search 
Analysis

• Least Cost First Search is complete and optimal if there is 𝜀 > 0 with  
cost(<n1,n2>) > 𝜀 for every arc <n1,n2>: 

1. Suppose <n1,n2,...,nk> is the optimal solution 

2. Suppose that p is any non-optimal solution 
So, cost(p) > <n1,n2,...,nk> 

3. For every 1 ≤ ℓ ≤ k, cost(<n1,n2,...,nℓ>) < cost(p) 

4. So p will never be removed from the frontier before <n1,n2,...,nk> 

• What is the worst-case space complexity of Least Cost First Search?  
[A: O(m)]  [B: O(mb)]  [C: O(bm)]  [D: it depends] 

• When does Least Cost First Search have to expand every node of the graph?



Summary
• Different search strategies have different properties and behaviour 

• Depth first search is space-efficient but not always complete or time-efficient 

• Breadth first search is complete and always finds the shortest path to a goal, 
but is not space-efficient 

• Iterative deepening search can provide the benefits of both, at the expense 
of some time-efficiency 

• All three strategies must potentially expand every node, and are not 
guaranteed to return an optimal solution 

• Least cost first is essentially breadth-first search with an optimality guarantee


