
Uninformed Search

CMPUT 366: Intelligent Systems 
 

P&M §3.5

Logistics

• NO LAB THIS WEEK

• Assignment #1 released next week

Recap: Graph Search
• Many AI tasks can be represented as search problems

• A single generic graph search algorithm can then solve
them all!

• A search problem consists of states, actions, start states, a
successor function, a goal function, optionally a cost
function

• Solution quality can be represented by labelling arcs of the
search graph with costs

Recap: Generic Graph
Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}  
while frontier is not empty: 
 select a path <n1, n2, ..., nk> from frontier  
 remove <n1, n2, ..., nk> from frontier  
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: (i.e., expand node nk) 
 add <n1, n2, ..., nk, n> to frontier  
end while

• Which value is selected from the frontier defines the search strategy

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 19 14 / 17

https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Lecture Outline
1. Logistics & Recap

2. Properties of Algorithms and Search Graphs

3. Depth First Search

4. Breadth First Search

5. Iterative Deepening Search

6. Least Cost First Search

Algorithm Properties
What properties of algorithms do we want to analyze?

• A search algorithm is complete if it is guaranteed to find a solution within a
finite amount of time whenever a solution exists.

• The time complexity of a search algorithm is a measure of how much
time the algorithm will take to run, in the worst case.

• In this section we measure by number of paths added to the frontier.

• The space complexity of a search algorithm is a measure of how much
space the algorithm will use, in the worst case.

• We measure by maximum number of paths in the frontier.

Search Graph Properties
What properties of the search graph do algorithmic properties depend on?

• Forward branch factor: Maximum number of neighbours  
Notation: b

• Maximum path length. (Could be infinite!)  
Notation: m

• Presence of cycles

• Length of the shortest path to a goal node

Depth First Search
Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}  
while frontier is not empty: 
 select the newest path <n1, n2, ..., nk> from frontier  
 remove <n1, n2, ..., nk> from frontier  
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier 
end while

Question:

What data structure for the
frontier implements this search
strategy?

Depth First Search
Depth-first search always removes one of the longest paths from the frontier.

Example: 
Frontier: [p1, p2, p3, p4] 
successors(p1) = {n1, n2, n3}

What happens?

1. Remove p1; test p1 for goal

2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to front of frontier

3. New frontier: [<p1,n1>, <p1,n2>, <p1,n3>, p2, p3, p4]

4. p2 is selected only after all paths starting with p1 have been explored

Question: When is <p1,n3> selected?

Depth First Search Analysis

For a search graph with maximum branch factor b and 
maximum path length m...

1. What is the worst-case time complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

2. When is depth-first search complete?

3. What is the worst-case space complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use 
Depth First Search

• When is depth-first search appropriate?

• Memory is restricted

• All solutions at same approximate depth

• Order in which neighbours are searched can be tuned to
find solution quickly

• When is depth-first search inappropriate?

• Infinite paths exist

• When there are likely to be shallow solutions

• Especially if some other solutions are very deep

Breadth First Search
Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}  
while frontier is not empty: 
 select the oldest path <n1, n2, ..., nk> from frontier  
 remove <n1, n2, ..., nk> from frontier  
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier 
end while

Question:

What data structure for the
frontier implements this search
strategy?

Breadth First Search
Breadth-first search always removes one of the shortest paths
from the frontier.

Example: 
Frontier: [p1, p2, p3, p4] 
successors(p1) = {n1, n2, n3}

What happens?

1. Remove p1; test p1 for goal

2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to end of frontier:

3. New frontier: [p2, p3, p4, <p1,n1>, <p1,n2>, <p1,n3>,]

4. p2 is selected next

Breadth First Search Analysis

For a search graph with maximum branch factor b and 
maximum path length m...

1. What is the worst-case time complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

2. When is breadth-first search complete?

3. What is the worst-case space complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use
Breadth First Search

• When is breadth-first search appropriate?

• When there might be infinite paths

• When there are likely to be shallow solutions, or

• When we want to guarantee a solution with fewest arcs

• When is breadth-first search inappropriate?

• Large branching factor

• All solutions located deep in the tree

• Memory is restricted

Comparing DFS vs. BFS

• Can we get the space benefits of depth-first search without giving up completeness?

• Run depth-first search to a maximum depth

• then try again with a larger maximum

• until either goal found or graph completely searched

Depth-first Breadth-first

Complete? Only for finite
graphs Complete

Space
complexity O(mb) O(bm)

Time
complexity O(bm) O(bm)

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞: 
 Perform depth-first search to a maximum depth max_depth 
end for 

Iterative Deepening Search
Input: a graph; a set of start nodes; a goal function

more_nodes := True 
while more_nodes: 
 frontier := { <s> | s is a start node}  
 for max_depth from 1 to ∞: 
 more_nodes := False 
 while frontier is not empty:  
 select the newest path <n1, n2, ..., nk> from frontier 
 remove <n1, n2, ..., nk> from frontier 
 if goal(nk):  
 return <n1, n2, ..., nk> 
 if k < max_depth: 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier 
 else if nk has neighbours: 
 more_nodes := True

Iterative Deepening Search
Analysis

For a search graph with maximum branch factor b and 
maximum path length m...

1. What is the worst-case time complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

2. When is iterative deepening search complete?

3. What is the worst-case space complexity?

• [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use 
Iterative Deepening Search

• When is iterative deepening search appropriate?

• Memory is limited, and

• Both deep and shallow solutions may exist

• or we prefer shallow ones

• Tree may contain infinite paths

Optimality

Definition: 
An algorithm is optimal if it is guaranteed to return an optimal (i.e.,
minimal-cost) solution first.

Question: Which of the three algorithms presented so far is optimal?
Why?

Least Cost First Search

• None of the algorithms described so far is guided by arc costs

• BFS and IDS are implicitly guided by path length, which can be the
same for uniform-cost arcs

• They return a path to a goal node as soon as they happen to blunder
across one, but it may not be the optimal one

• Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search

Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}  
while frontier is not empty: 
 select the cheapest path <n1, n2, ..., nk> from frontier  
 remove <n1, n2, ..., nk> from frontier  
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier 
end while

Question:

What data structure for the
frontier implements this search
strategy?

i.e., cost(<n1, n2, ..., nk>) ≤ cost(p) 
for all other paths p ∈ frontier

Least Cost First Search
Analysis

• Least Cost First Search is complete and optimal if there is 𝜀 > 0 with  
cost(<n1,n2>) > 𝜀 for every arc <n1,n2>:

1. Suppose <n1,n2,...,nk> is the optimal solution

2. Suppose that p is any non-optimal solution 
So, cost(p) > <n1,n2,...,nk>

3. For every 1 ≤ ℓ ≤ k, cost(<n1,n2,...,nℓ>) < cost(p)

4. So p will never be removed from the frontier before <n1,n2,...,nk>

• What is the worst-case space complexity of Least Cost First Search?  
[A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

• When does Least Cost First Search have to expand every node of the graph?

Summary
• Different search strategies have different properties and behaviour

• Depth first search is space-efficient but not always complete or time-efficient

• Breadth first search is complete and always finds the shortest path to a goal,
but is not space-efficient

• Iterative deepening search can provide the benefits of both, at the expense
of some time-efficiency

• All three strategies must potentially expand every node, and are not
guaranteed to return an optimal solution

• Least cost first is essentially breadth-first search with an optimality guarantee

