What is Artificial Intelligence?

CMPUT 366: Intelligent Systems

P&M Chapter 1

Intelligent Systems

- This course is about constructing intelligent agents.
- But what does that **mean**? \bullet
 - Smarter than the smartest genius?
 - (wait, what does "smart" mean?)
 - Able to do things that computers are pretty bad at?
 - Able to trick a human into thinking it's another human?
- We'll try to define both intelligent and agent more formally

Lecture Outline

1. Course Logistics

- 2. What is Artificial Intelligence?
- 3. Al Seminar!

Course information: <u>https://eclass.srv.ualberta.ca/course/view.php?id=57991</u>

- This is the main source for information about the class
- Slides, readings, assignments, deadlines

Labs: Thursdays 5:00pm to 8:00pm (<u>BS M 149</u>, i.e., *this room*)

- tutorials + space/time to work on assignments + TA office hours
- No labs this week

eClass Discussion forum for public questions about assignments, lecture material, etc.

Email: james.wright@ualberta.ca for private questions

• (health problems, inquiries about grades)

Office hours: After every lecture, or by appointment

Course Essentials

CMPUT 366 in One Slide

- Focus on intelligent agents
 - Intelligence \bullet
 - Agents
- Survey methods to construct such agents
 - classic
 - contemporary \bullet
- This is *not* a reinforcement learning class
 - Reinforcement learning class is CMPUT 397

Readings

We will draw from a lot of texts for this class. BUT, they are all available online for free:

[<u>P&M</u>] David Poole and Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, 2nd edition.

[Bar] David Barber, Bayesian Reasoning and Machine Learning.

[GBC] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning.

[<u>S&B</u>] Richard S. Sutton and Andrew G. Barto, *Reinforcement Learning: An Introduction, 2nd edition*.

[<u>S&LB</u>] Yoav Shoham and Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.

Readings for each lecture are listed on the schedule and on eClass.

Evaluation

Grade breakdown

- Assignments: 30%
- Midterm exam: 30%
- Final exam: 40%

Late assignments

• 20% deducted per day

Missed assignments or exams

- **Provide a note** from doctor, academic advisor, etc.
- Assignments score will be reweighted to exclude missed assignments
- If the midterm exam is missed, the mark from the final exam will be used in its place • i.e., grade will be 30% assignments, 70% final exam

Assignments

- There will be four assignments (roughly every 3 weeks)
- Types of questions:
 - Short answer: definitions, distinctions, etc.
 "What is a Nash equilibrium?"
 - Model construction: "Represent XYZ as a graph search problem"
 - Algorithmic considerations: "What would be an appropriate algorithm to answer XYZ? Why?"
 - Small implementation task
- Assignments are submitted electronically (via eClass)

Collaboration Policy

Detailed version on the syllabus

You are **encouraged to discuss assignments** with other students:

- 1. You must list everyone you talked with about the assignment.
- 2. You may not share or look at each other's written work or code.
- 3. You must write up your solutions individually

Individual work only on **exams**: No collaboration allowed

Academic Conduct

- Submitting someone else's work as your own is plagiarism.
- So is helping someone else to submit your work as their own.
- We report **all cases** of academic misconduct to the university.
- The university takes academic misconduct very seriously. Possible consequences:
 - Zero on the assignment or exam (virtually guaranteed)
 - Zero for the course
 - Permanent notation on transcript
 - Suspension or expulsion from the university

Prerequisites

- (There will be a refresher lecture)
- Basic **calculus**: gradients, vector norms
- Basic graph theory: Nodes, edges •
- Ability to program in **Python**
 - Most assignments will have a programming component

• Comfort with or interest in formal, mathematical/algorithmic reasoning

• Basic **probability**: random variables, expectations, conditional probability.

What is Artificial Intelligence?

1. Think like humans

3. Think rationally

Two dimensions:

- Reasoning vs. acting \bullet
- Mimicking humans vs. rationality \bullet

2. Act like humans

4. Act rationally

1. Thinking Humanly

Model the **cognitive processes** of humans

Benefits:

- We know humans are intelligent! Why not learn from that example?
- Understanding human cognition is scientifically valuable in itself. \bullet

Drawbacks:

- Cognitive science is really hard! \bullet
- Humans often think in ways that we wouldn't call "intelligent"

2. Acting Humanly

The Turing Test:

- ullet

Drawbacks:

- \bullet (We already know how to make more people...)
- Don't people often behave pretty unintelligently?

Don't try to define exactly what makes a system intelligent

• If you can act intelligently enough that people can't tell you **apart** from other people, then you are effectively intelligent

Is acting exactly like a person really what we want?

3. Thinking Rationally

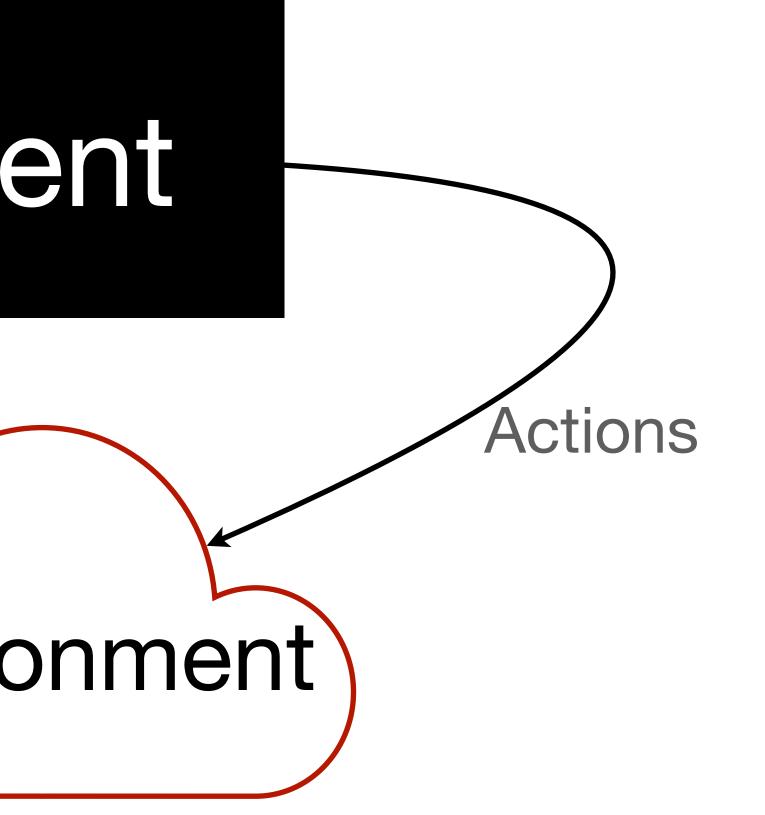
Rationality: An ideal of what intelligent cognition **should** do

Benefits:

- Leads to more effective agents \bullet
- Not just "whatever people do, even when that's terrible" ullet
- Philosophically important! What is rational thinking? lacksquare

Drawbacks:

Difficult to define formally! What is rational thinking? \bullet


4. Acting Rationally

Benefits:

- More clearly defined than human behaviour
- When human behaviour is irrational, we'd usually prefer the rational behaviour
 - Or would we? Counter-examples?
- Rational behaviour is also easier to define than rational thought

Rational action: Doing what is most likely to best achieve our goals

Rational Agents An agent is a system that acts in an environment to achieve goals or optimize preferences. Prior knowledge Goals/preferences Gent Observations Actions Environment

Course Topics

- Search
- Reasoning Under Uncertainty
- Causality ullet
- Supervised Learning
- Deep Learning
- Reinforcement Learning
- Multiagent Systems

Summary

- Course details on eClass: <u>https://eclass.srv.ualberta.ca</u>
- This course will focus on the construction of rational agents
 - Agent: System that acts in an environment to achieve goals
 - Rational action: Do what best achieves explicit goals

https://eclass.srv.ualberta.ca/course/view.php?id=57991

Al Seminar

What: Great talks on cutting-edge AI research External (e.g., DeepMind, IBM) and internal speakers

When:Fridays at noonBut come at 11:45 for free pizza / good seats

Where:CSC 3-33Calendar:www.cs.ualberta.ca/~ai/cal/

Announcements: Sign up for **ai-seminar** <u>www.mailman.srv.ualberta.ca/</u>