Game Theory for Sequential Interactions

S&LB §5.0-5.2.2

CMPUT 366: Intelligent Systems

Lecture Outline

- Recap 1.
- 2. Perfect Information Games
- 3. Backward Induction
- Imperfect Information Games 4.

Recap: Game Theory

- Game theory studies the interactions of rational agents
 - Canonical representation is the normal form game
- Game theory uses **solution concepts** rather than optimal behaviour
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - Pareto optimal: no agent can be made better off without making some other agent worse off
 - Nash equilibrium: no agent regrets their strategy given the choice of the other agents' strategies

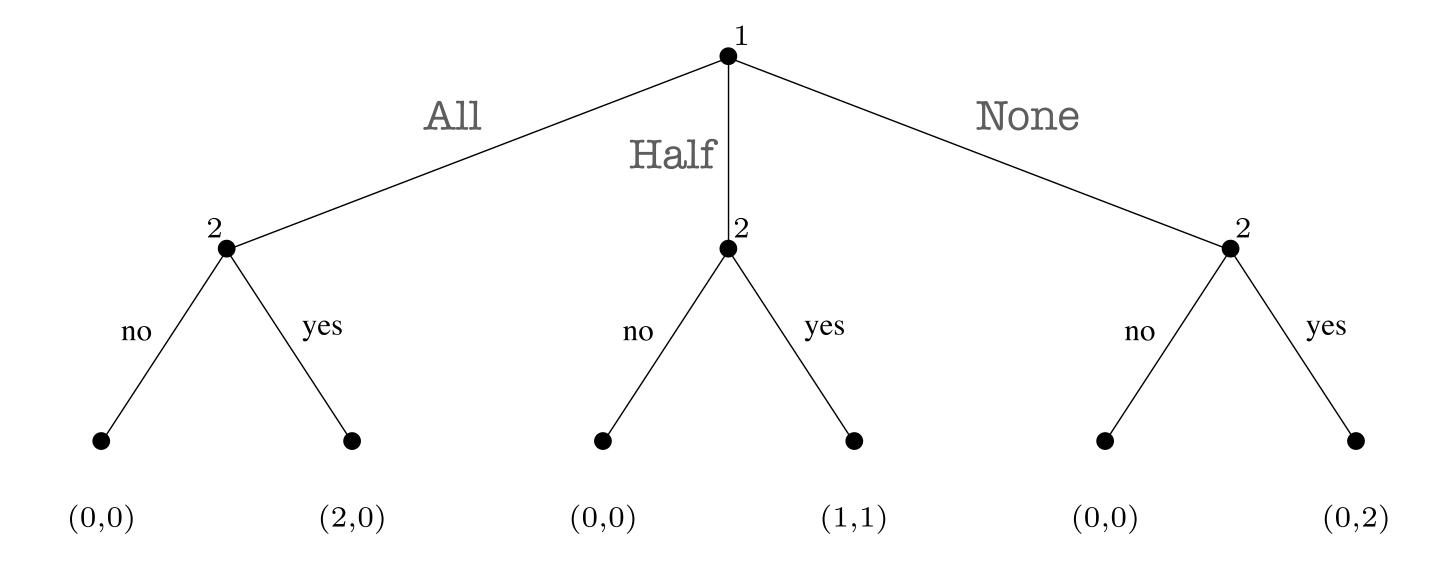
Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

Ballet

Soccer

Extensive Form Games

- Normal form games don't have any notion of sequence: all actions happen simultaneously
- The **extensive form** is a game representation that explicitly includes temporal structure (i.e., a **game tree**)



Perfect Information

There are two kinds of extensive form game:

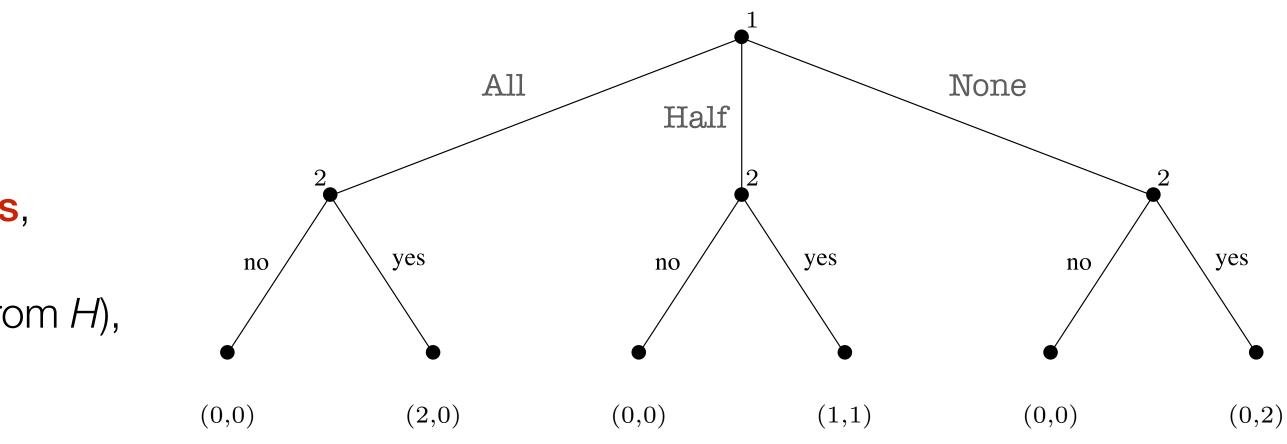
- Perfect information: Every agent sees all actions of the 1. other players (including Nature)
 - e.g.: Chess, checkers, Pandemic
- Imperfect information: Some actions are hidden 2.
 - Players may not know exactly where they are in the tree
 - e.g.: Poker, rummy, Scrabble

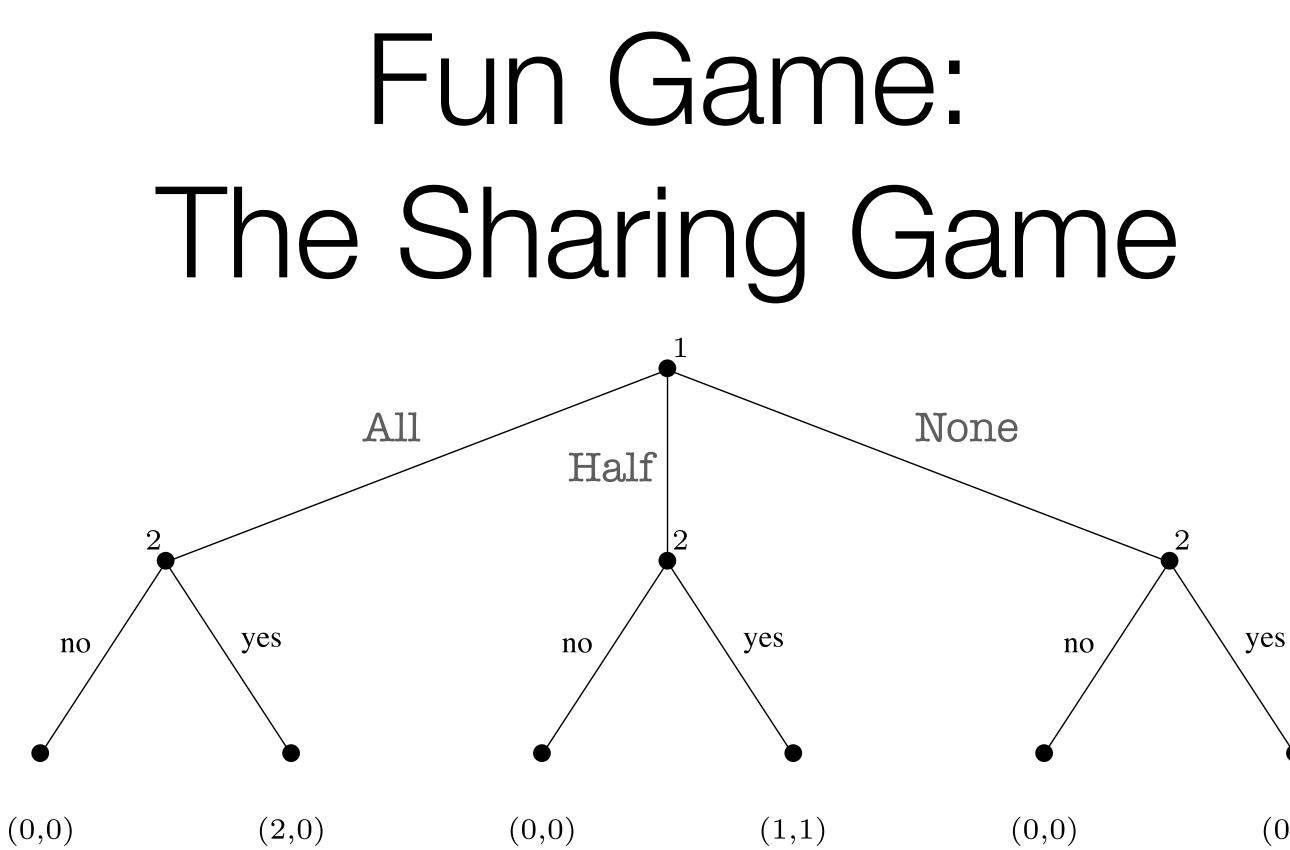
Perfect Information Extensive Form Game

Definition:

A finite perfect-information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- *N* is a set of *n* **players**,
- A is a single set of **actions**,
- *H* is a set of nonterminal **choice nodes**,
- Z is a set of **terminal nodes** (disjoint from H),
- $\chi: H \to 2^A$ is the action function,
- $\rho: H \to N$ is the player function,
- $\sigma: H \times A \to H \cup Z$ is the successor function,
- $u = (u_1, u_2, ..., u_n)$ is a **utility function** for each player, $u_i : Z \rightarrow \mathbb{R}$





- rejects
 - If rejected, nobody gets any coins.

• Two siblings must decide how to share two \$100 coins

(0,2)

• Sibling 1 suggests a division, then sibling 2 accepts or

Pure Strategies

game?

Definition:

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in choice nodes, i.e.,

h∈E

even those that will never be reached

Question: What are the **pure strategies** in an extensive form

extensive form. Then the pure strategies of player i consist of the cross product of actions available to player *i* at each of their

$$\prod_{H|\rho(h)=i} \chi(h)$$

A pure strategy associates an action with each choice node,

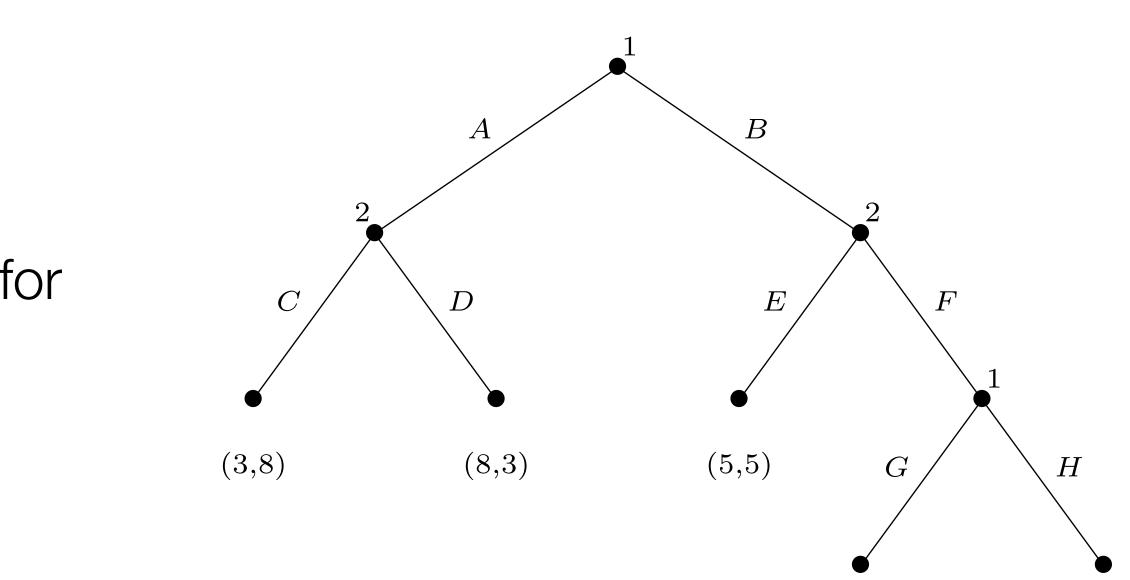
Pure Strategies Example

Question: What are the **pure strategies** for player 2?

• $\{(C,E), (C,F), (D,E), (D,F)\}$

Question: What are the **pure strategies** for player 1?

- $\{(A,G), (A,H), (B,G), (B,H)\}$
- Note that these associate an action with the second choice node even when it can never be reached



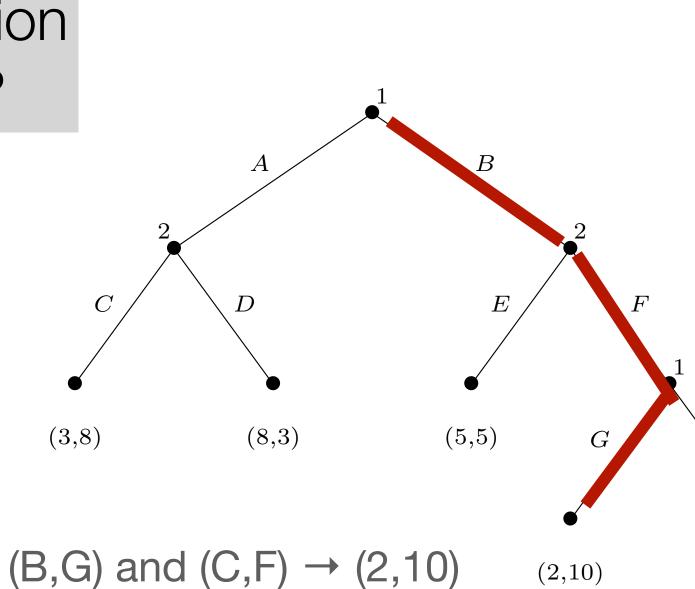
(2,10)

(1,0)

Induced Normal Form

Question:

Which representation is more **compact**?



- We have now defined a set of **agents**, **pure strategies**, and **utility functions**
- Any extensive form game defines a corresponding induced normal form game

		C,E	C,F	D,E	D,F
	A,G	3,8	3,8	8,3	8,3
	A,H	3,8	3,8	8,3	8,3
H	B,G	5,5	2,10	5,5	2,10
(1,0)	B,H	5,5	1,0	5,5	1,0

• Any pair of pure strategies uniquely identifies a **terminal node**, which identifies a **utility** for each agent

Reusing Old Definitions

- existing definitions for:
 - Mixed strategy \bullet
 - Best response

• We can plug our new definition of **pure strategy** into our

Nash equilibrium (both pure and mixed strategy)

Question:

What is the definition of a mixed strategy in an extensive form game?

Pure Strategy Nash Equilibria

Theorem: [Zermelo, 1913] Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.

- Starting from the bottom of the tree, no agent needs to
- single choice node

randomize, because they already know the best response

• There might be **multiple** pure strategy Nash equilibria in cases where an agent has multiple best responses at a

Backward Induction

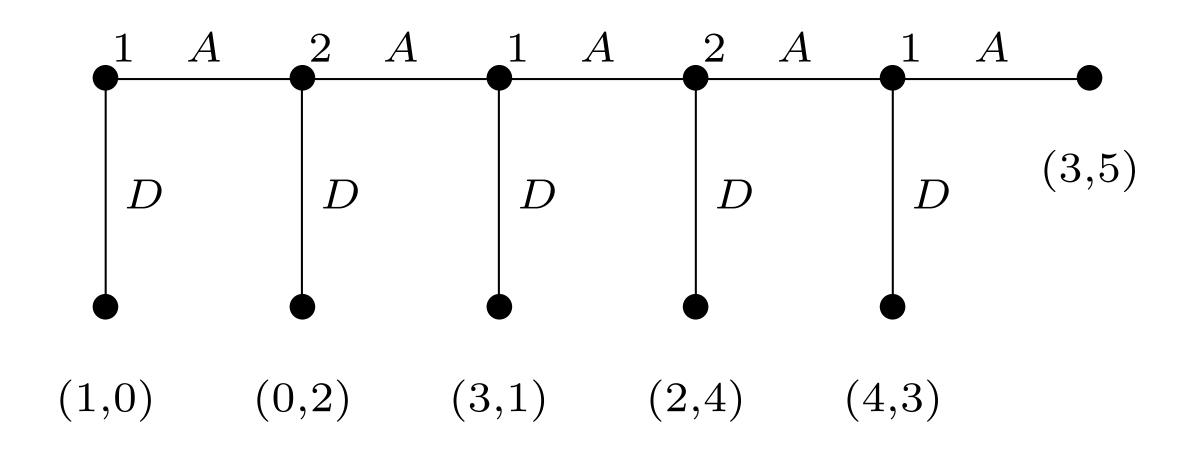
- **Backward induction** is an algorithm for computing a pure
- lacksquare

BACKWARDINDUCTION(*h*): if *h* is terminal: return u(h) $i := \rho(h)$ *U* := -∞ for each h' in $\chi(h)$: V = BACKWARDINDUCTION(h')if $V_i > U_i$: $U_i := V_i$ return U

strategy equilibrium in a perfect-information extensive-form game.

Idea: Replace subgames in the tree with their equilibrium values

Fun Game: Centipede



- If they go Down, the game ends.

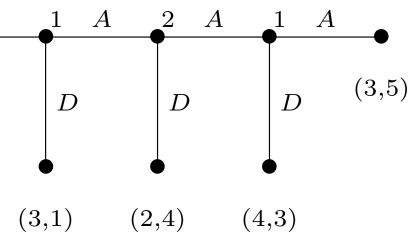
• At each stage, one of the players can go Across or Down

Backward Induction Criticism $\begin{bmatrix} D & D & D & D & D & D & D & (3,5) \end{bmatrix}$

(1,0)

(0,2)

- **Empirically**, this is not how real people tend to play!
- **Theoretically**, what should you do if you arrive at an **off-path** node?



• The unique equilibrium is for each player to go Down at the first opportunity

• How do you update your beliefs to account for this probability 0 event?

• If player 1 knows that you will update your beliefs in a way that causes you not to go down, then going down is no longer their only rational choice...

Imperfect Information, informally

- lacksquareby all players
 - ulletconstant utility and known mixed strategy
- But many games involve hidden actions
 - Cribbage, poker, Scrabble
 - actions are hidden, sometimes both
- sequential actions, some of which may be hidden

Perfect information games model sequential actions that are observed

Randomness can be modelled by a special *Nature* player with

Sometimes actions of the players are hidden, sometimes Nature's

Imperfect information extensive form games are a model of games with

Imperfect Information Extensive Form Game

Definition: $G = (N, A, H, Z, \chi, \rho, \sigma, u, I)$, where

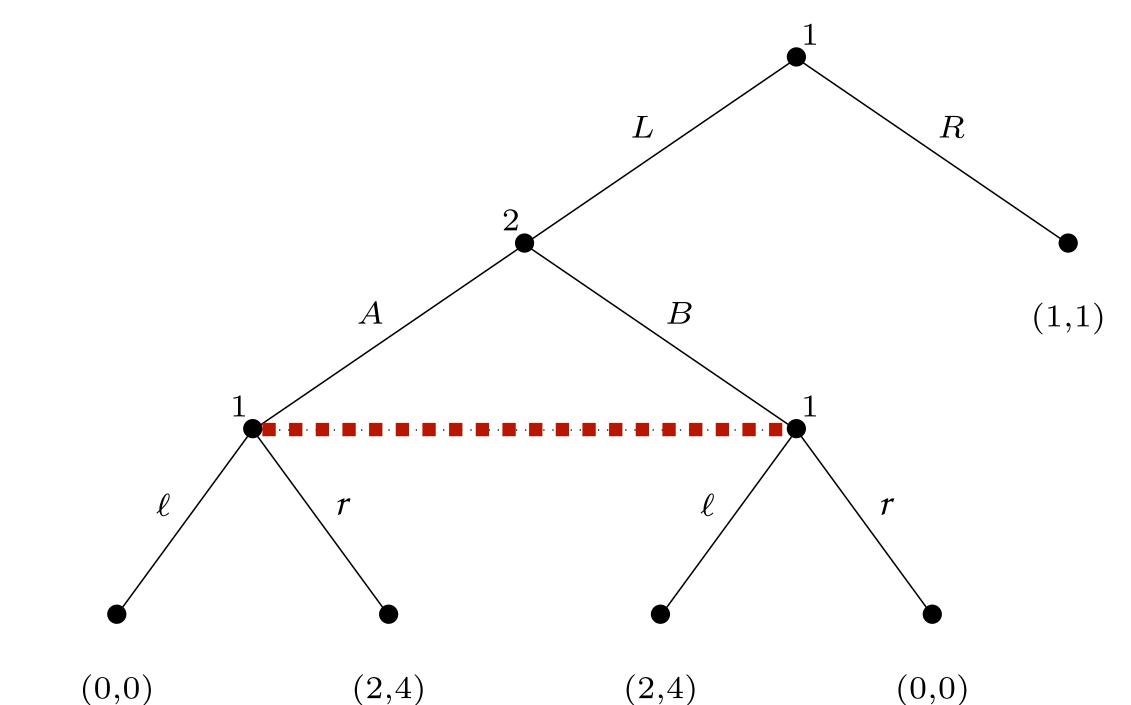
- and
- $h \in I_{i,j}$ and $h' \in I_{i,j}$.

An imperfect information game in extensive form is a tuple

• $(N, A, H, Z, \chi, \rho, \sigma, u)$ is a perfect information extensive form game,

• $I = (I_1, ..., I_n)$, where $I_i = (I_{i,1}, ..., I_{i,k_i})$ is an equivalence relation on (i.e., partition of) $\{h \in H : \rho(h) = i\}$ with the property that $\chi(h) = \chi(h')$ and $\rho(h) = \rho(h')$ whenever there exists a *j* for which

Imperfect Information Extensive Form Example



- The members of the equivalence classes are also called **information sets**
- **Question:** What are the information sets for each player in this game?

Players **cannot distinguish** which **history** they are in within an information set

Pure Strategies

Question: What are the pure strategies in an imperfect information game?

Definition:

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u, I)$ be an imperfect information game in extensive form. Then the pure strategies of player i consist of the cross product of actions available to player *i* at each of their information sets, i.e.,

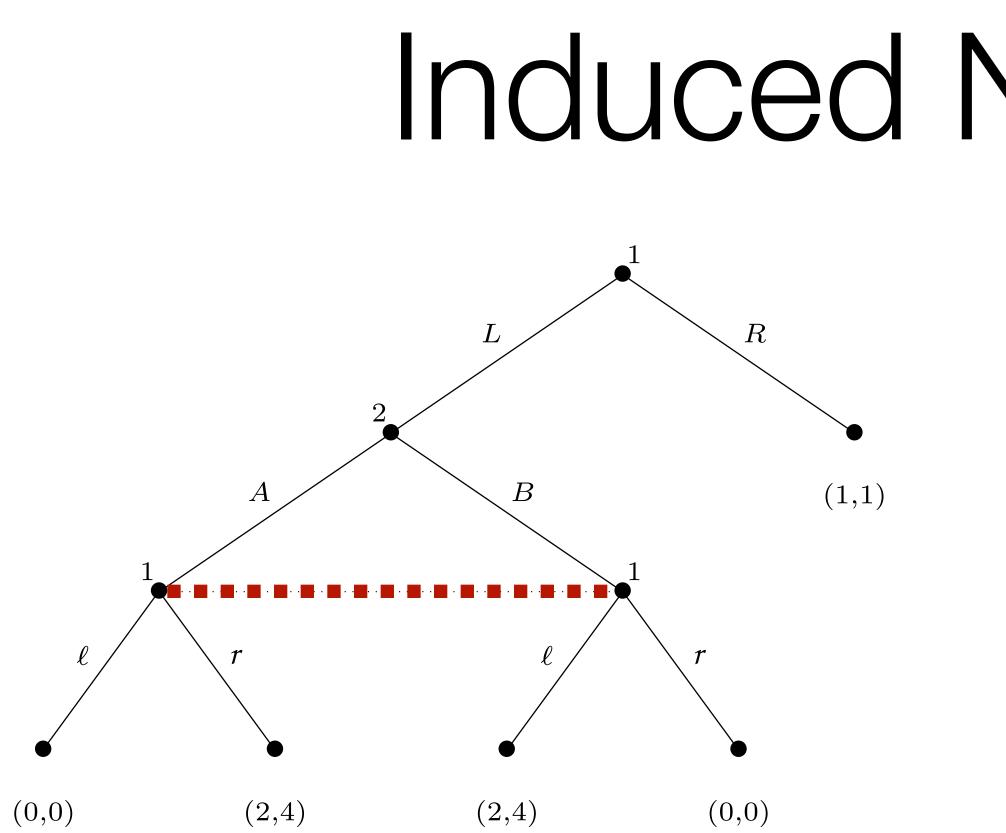
> $\chi(h)$ $I_{i,i} \in I_i$

• A pure strategy associates an action with each information set, even those that will **never be reached**

Questions:

In an imperfect information game:

- 1. What are the mixed strategies?
- 2. What is a best response?
- What is a 3. Nash equilibrium?



- We have now defined a set of **agents**, **pure strategies**, and **utility functions**
- Any extensive form game defines a corresponding **induced normal form game**

Induced Normal Form

	Α	B
L,ℓ	0,0	2,4
L,r	2,4	0,0
R,ℓ	1,1	1,1
R,r	1,1	1,1

Question:

Can you represent an arbitrary perfect information extensive form game as an **imperfect** information game?

• Any pair of pure strategies uniquely identifies a **terminal node**, which identifies a **utility** for each agent

Summary

- Extensive form games model sequential actions
- Pure strategies for extensive form games map choice nodes to actions
 - Induced normal form: normal form game with these pure strategies
 - Notions of mixed strategy, best response, etc. translate directly
- Perfect information: Every agent sees all actions of the other players
 - **Backward induction** computes a **pure strategy Nash equilibrium** for any perfect information extensive form game
- Imperfect information: Some actions are hidden
 - Histories are partitioned into information sets; players cannot distinguish between histories in the same information set