Game Theory for Single Interactions

S&LB §3.0-3.3.2

CMPUT 366: Intelligent Systems

- 1. Logistics & Recap
- 2. Game Theory
- 3. Solution Concepts
- Mixed Strategies 4.

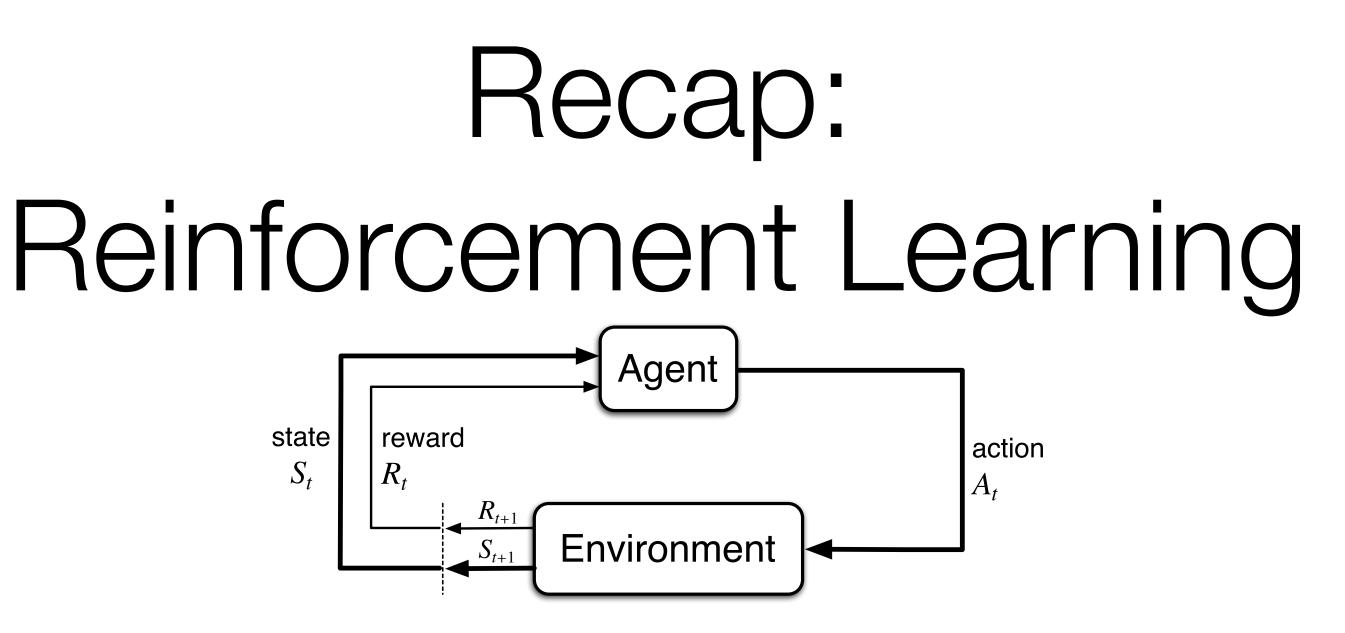
Lecture Overview

Labs & Assignment #4

- Assignment #4 is released today
- Due **April 12** before **midnight**
- Today's lab is from 5:00pm to 7:50pm in CAB 235
 - Not mandatory

See the website under Assignments (or on the Schedule)

You can get help from the TAs on your assignment in labs



- Reinforcement learning: Single agents learn from interactions with an environment
- **Prediction:** Learn the value $v_{\pi}(s)$ of executing policy π from a given state s, or the value $q_{\pi}(s,a)$ of taking action a from state s and then executing π
- **Control:** Learn an optimal **policy**

 - Action-value methods: Policy improvement based on action value estimates • Policy gradient methods: Search parameterized policies directly

Game Theory

- **Game theory** is the mathematical study of interaction between multiple **rational**, self-interested agents
- Rational agents' preferences can be represented as maximizing the expected value of a scalar utility function
- Self-interested: Agents pursue only their own preferences
 - *Not* the same as "agents are psychopaths"! Their preferences may include the well-being of other agents.
 - Rather, the agents are **autonomous**: they decide on their own priorities independently.

Fun Game: Prisoner's Dilemma

	Cooperate	Defect	Two sus police.
			• If t
Cooperate	-1,-1	-5,0	eac 1 y
			• If t wil
Defect	0,-5	-3,-3	• If c de

Play the game with someone near you. Then find a new partner and play again. Play 3 times in total, against someone new each time.

spects are being questioned separately by the

they both remain silent (cooperate -- i.e., with ach other), then they will both be sentenced to year on a lesser charge

they both implicate each other (**defect**), then they ill both receive a reduced sentence of **3 years**

If one defects and the other cooperates, the defector is given immunity (0 years) and the cooperator serves a full sentence of **5 years**.

Normal Form Games

The Prisoner's Dilemma is an example of a **normal form game**. depending on the profile of actions.

Definition: Finite, *n*-person normal form game

- N is a set of *n players*, indexed by *i*
- $A = A_1 \times A_2 \times ... \times A_n$ is the set of action profiles
 - A_i is the **action set** for player *i*
- $u = (u_1, u_2, ..., u_n)$ is a **utility function** for each player

•
$$u_i: A \to \mathbb{R}$$

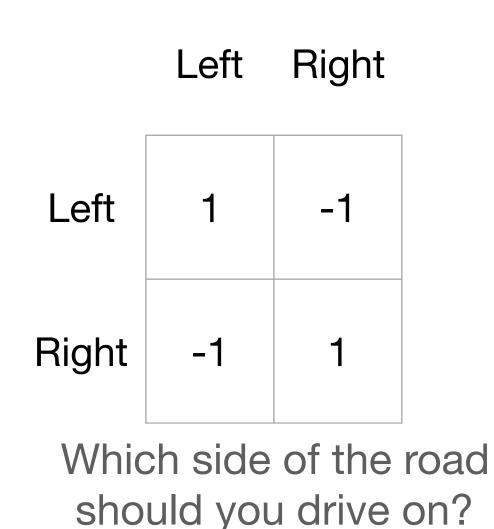
- Agents make a single decision **simultaneously**, and then receive a payoff

Games of Pure Cooperation and Pure Competition

- In a zero-sum game, players have exactly opposed interests: $u_i(a) = -u_j(a)$ for all $a \in A$, $i \neq j$ (*)
 - There must be precisely two players
- In a game of **pure cooperation**, players have exactly the same interests: $u_i(a) = u_j(a) \forall a \in A, i, j \in N$

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Matching Pennies



General Game: Battle of the Sexes

Play against someone near you. Play 3 times in total, playing against someone new each time.

The most interesting games are simultaneously both cooperative and competitive!

Soccer

0, 0
1, 2

Optimal Decisions in Games

- In single-agent environments, the key notion is optimal decision: a decision that maximizes the agent's expected utility
- Question: What is the optimal strategy in a multiagent setting?
 - In a multiagent setting, the notion of optimal strategy is incoherent
 - The best strategy depends on the strategies of others

- From the viewpoint of an **outside observer**, can some outcomes of a game be labelled as **better** than others?
 - We have no way of saying one agent's interests are more important than another's
 - We can't even **compare** the agents' utilities to each other, because of affine invariance! We don't know what "units" the payoffs are being expressed in.
- Game theorists identify certain subsets of outcomes that are \bullet interesting in one sense or another. These are called solution concepts.

Solution Concepts

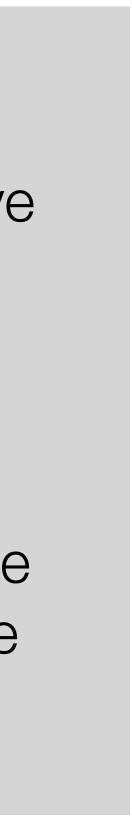
Pareto Optimality

- Sometimes, some outcome o is at least as good for any agent as outcome o', and there is some agent who strictly prefers o to o'.
 - In this case, o seems defensibly better than o'
- **Definition:** *o* **Pareto dominates** *o*' in this case

Definition: An outcome o^{*} is **Pareto optimal** if no other outcome Pareto dominates it.

Questions:

- Can a game have more than one Pareto-optimal outcome?
- Does every game 2. have at least one Pareto-optimal outcome?



Best Response

- Which actions are better from an individual agent's viewpoint?
- That depends on what the other agents are doing!

Notation:

$$a_{-i} \doteq (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$$
$$a = (a_i, a_{-i})$$

Definition: Best response

 $BR_i(a_{-i}) \doteq \{a_i^* \in A_i \mid u_i(a^*, a_{-i}) \ge u_i(a_i, a_{-i}) \ \forall a_i \in A_i\}$

Nash Equilibrium

- Best response is not, in itself, a solution concept
 - In general, agents won't know what the other agents will do
 - But we can use it to define a solution concept
- A Nash equilibrium is a **stable** outcome: one where no agent regrets their actions

Definition:

An action profile $a \in A$ is a (pure strategy) Nash equilibrium iff

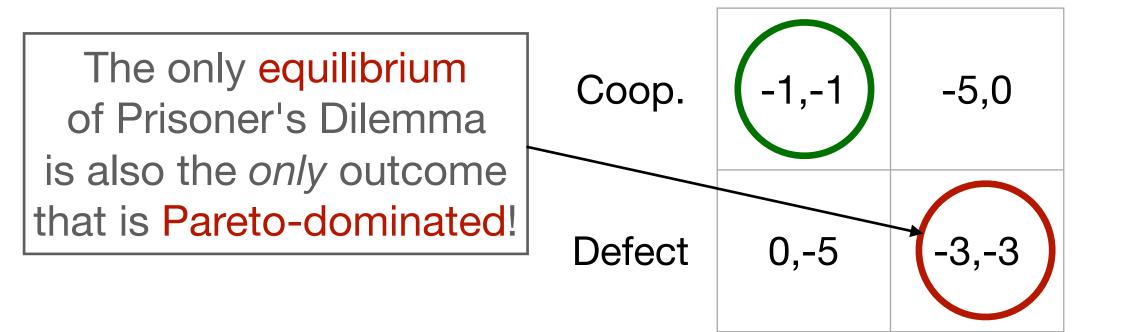
 $\forall i \in N, a_i \in BR_i(a_i)$

Questions:

- 1. Can a game have more than one pure strategy Nash equilibrium?
- Does every game 2. have at least one pure strategy Nash equilibrium?

Nash Equilibria of Examples

Coop. Defect



Ballet Soccer

Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

	Left	Right
Left	1	-1
Right	-1	1

Heads Tails

Heads	1,-1	-1,1
Tails	-1,1	1,-1

Mixed Strategies

Definition:

- A strategy s_i for agent i is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.
 - **Pure strategy**: only a single action is played
 - Mixed strategy: randomize over multiple actions
- Set of i's strategies: $S_i \doteq \Delta(A)$
- Set of strategy profiles: $S = S_1 \times ... \times S_n$

$$A_i$$
)

• Utility of a mixed strategy profile: $u_i(s) = \sum u_i(a) = \sum u_i(a)$ j∈N a∈A

Best Response and Nash Equilibrium

Definition:

The set of *i*'s **best responses** to a strategy profile $s \in S$ is

$$BR_i(s_{-i}) \doteq \{a_i^* \in A_i \mid u_i\}$$

Definition:

A strategy profile $s \in S$ is a **Nash equilibrium** iff

$$\forall i \in N, a_i \in A_i \quad s_i(a_i) > 0 \implies a_i \in BR_{-i}(s_{-i})$$

equilibrium

 $u_i(a_i^*, s_{-i}) \ge u_i(a_i, s_{-i}) \ \forall a_i \in A_i\}$

• When at least one s_i is mixed, s is a **mixed strategy Nash**

Theorem: [Nash 1951] has at least one Nash equilibrium.

• Pure strategy equilibria are *not* guaranteed to exist

Nash's Theorem

Every game with a finite number of players and action profiles

Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- \bullet
- lacksquarewhat the agent will do
- play

They truly are **sampling a distribution** in their heads, perhaps to **confuse** their opponents (e.g., soccer, other zero-sum games)

The distribution represents the **other agents' uncertainty** about

The distribution is the **empirical frequency** of actions in repeated

The distribution is the frequency of a pure strategy in a **population** of pure strategies (i.e., every individual plays a pure strategy)

Summary

- Game theory studies the interactions of rational agents
 - Canonical representation is the normal form game
- Game theory uses solution concepts rather than optimal behaviour
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - Pareto optimal: no agent can be made better off without making some other agent worse off
 - Nash equilibrium: no agent regrets their strategy given the choice of the other agents' strategies