Function Approximation

CMPUT 366: Intelligent Systems



| ecture Outline

. Recap

. Parameterized Value Functions

. Gradient Descent

. Approximation Schemes



Recap: D Learning

Temporal Difference Learning bootstraps and learns from experience

 Dynamic programming bootstraps, but doesn't learn from
experience (requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap

Prediction: TD(0) algorithm
Sarsa estimates action-values of actual -greedy policy

Q-Learning estimates action-values of optimal policy while
executing an £-greedy policy



labular Value Functions

We have been assuming a tabular representation for value
function estimates V(s) and Q(s,a)

 \We can separately set the value of V(s) or Q(s,a) for every
possibles e S anda e A

This implicitly means that we must store a separate value for
every possible input for the value function

Question: \What should we do if there are too many states to
store a value for each? (e.q., pixel values in the Atari setting)

Question: \What should we do if the state isn't fully observable?



Example: Number Line Walk

B> (@) () (n)es ... ()

n(als) =05 Vse &, a e {left, right}

* Question: Would dynamic programming, Monte Carlo, or
TD(0) work to estimate v ?

* Question: How much storage would that require?

 Question: \What could we do instead?



Parameterized
Value Functions

A parameterized value function's values are set by setting the values of
a weight vector w € R¢;

V(S,W) =~ Vi(S)
* v could be a linear function: w is the feature weights

e v could be a neural network: w is the weights, biases, kernels, etc.

« Many fewer weights than states: d << |J'|

* (Changing one weight changes the estimated value of many states

o Updating a single state generalizes to affect many other states’ values



Decoupled Estimates

* With tabular estimates:
* (Can update the value of a single state individually

* Estimates can be exactly correct for each state

 [or parameterized estimates:

» Estimates cannot be correct for each state (e.g., when
two states have identical features but different values)

* (Cannot independently adjust state values



Prediction Objective

Since we cannot guarantee that every state will be correct,
we must trade off estimation quality of one state vs. another

We will use a distribution 1(s) to specify how much we care
about the quality of our value estimate for each state

We will optimize the mean squared value error:

VEW) = Y u(s)[v(s) — (s, )|

SES

Question: \What should we use for 1(s)?



Stochastic Gradient Descent
with Known Irue Values

Suppose we are given a new example: (St, vi(Si)

How should we update our weight vector w”

Stochastic Gradient Descent: After each example, adjust
weights a tiny bit in direction that would most reduce error
on that example: target

. 1 ‘A/ 2
W, =W, — EaV —v(S, Wt)]

=W, + a |v(S,) — (S, w)| Vi(s, w,)



Stochastic Gradient Descent
with Unknown True Values

e |f we knew vi(S), we would be done!

* |nstead, we will update toward an approximate target Us:

W < W, +a|U =S, w)| Vs, w,)

* (U can be any of our update targets from previous lectures



Gradient Monte Carlo

 Monte Carlo target: U: = Gq

* U:is an unbiased estimate of vu(Sy): E[U: | Si=S] = vi(S)

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy m to be evaluated

Input: a differentiable function 9 : § x R — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51,A1,...,Rp, St using w
Loop for each step of episode, t =0,1,...,7T — 1:
W W+ a|Gy — 0(Se,w) | Vo (S, w)




Semi-gradient

TD(0) target: Ut = Rt+1 + pV(Ste1, Wi)

Bootstrapping targets like TD(0) depend on the current value
of wt, so they are not unbiased

Gradient Vv(s, w:) accounts for change in the estimate from
change in wt

But updates to w change both the estimate and the target

We call these updates semi-gradient updates



Semi-gradient TD(0)

 TD(0) target: Ut = Rir1 + YV(Sti1, W)

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated

Input: a differentiable function ¢ : §T x R? — R such that ¢ (terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|.5)
Take action A, observe R, S’
W W+ a|R+y0(S",w) — 0(S,w)| Vi (S,w)
S+ 5

until S 1s terminal




State Aggregation
B> (@) () (n)es ... ()

n(als) =05 Vse &, a e {left, right}

One easy way to reduce the memory usage for a large state space is to
aggregate states together

In the Number Line Walk example, we could group the states into 10
groups of 100 states each

W IS a 10-element vector

V(S,W) = Wyi), where x(s) = floor( s / 100)



State Aggregation

Value
scale

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,

Performance

using the gradient Monte Carlo algorithm (page 202).

True ,_
value v
.
1000
State

10.0137

Distribution
scale

10.0017



| Inear Approximation

—very state s is assigned a feature vector x(s)

X(s) = (x1(8), %5(8), ..., x45))
State-value function approximation: ;

D(s, W) = w!x(s) = Z wx(s)
Gradient is easy: =l

Vi(s, w) = X(s)

Gradient updates are easy:
W, < W+a [Ut — (s, Wt)] X($)

State aggregation is a special case of linear approximation (why?)



Feature Construction:
Coarse Coding

Divide state space up into overlapping cells

One indicator feature for each cell, set to 1 if
the state I1s In the cell

This Is another form of state aggregation

Updating one state generalizes to other states
that share a cell

Narrow generalization Broad generalization



Tile Coding

* The most practical form of coarse coding

* Partition state space into a uniform grid called a tiling

* Use multiple tilings that are offset

Tiling 2
Tiling 3
. Tilinge 4
Continuous e
2D state
. >
pace o
\ Point in
state space
to be

represented

. —Tilingl —

— e el e e— — o

= — —p— = o

__/a_i____.

Four active
——— tiles/features
overlap the point

_; and are used to

represent it




Summary

t Is often impractical to track the estimated value for every
possible state and/or action

Parameterized value function v(s,w) uses weights w € Rd
to specify the values of states

Weights can be set using gradient descent and semi-
gradient descent

Most efficient forms of approximation: Linear approximations,
especially coarse coding and tile coding




