lemporal Difference
|_earning

CMPUT 366: Intelligent Systems

L abs & Assignment #3

* Assignment #3 was due Mar 25 (today) before lecture

 Joday's lab is from 5:00pm to 7:50pm in CAB 235
e [ast-chance lab for late assignments
 Not mandatory

e Opportunity to get help from the TAs

| ecture Overview

1. Recap

2. 1D Prediction

3. On-Policy TD Control (Sarsa)

4. Off-Policy TD Control (Q-Learning)

Recap: Monte Carlo RL

Monte Carlo estimation: Estimate expected returns to a state
or action by averaging actual returns over sampled trajectories

—stimating action values requires either exploring starts or a
soft policy (e.g., £-greedy)

Off-policy learning is the estimation of value functions for a
target policy based on episodes generated by a different
behaviour policy

Off-policy control is learning the optimal policy (target policy)
using episodes from a behaviour policy

|_earning from Experience

Suppose we are playing a blackjack-like game in person, but we
don't know the rules.

e We know the actions we can take, we can see the cards,
and we get told when we win or lose

Question: Could we compute an optimal policy using
dynamic programming in this scenario?

Question: Could we compute an optimal policy using
Monte Carlo?

* \What would be the pros and cons of running Monte Carlo”

Bootstrapping

Bootstrapping bootstrapping
Learns from
experience M C

Requires full
dynamics D P

Dynamic programming bootstraps: Each iteration's
estimates are based partly on estimates from previous
Iterations

—ach Monte Carlo estimate is based only on actual returns

Upaates

+ Dynamic Programming: V(S)) <)’ z(a|S)) p(s'.r|S.a)[r+yV(s")

 Monte Carlo: V(S « V(S) + a |G, — V(S))]

. TD(O): V(S) < V(S) + a (R + YV(S,41) — V(S

vr(s) =(E)|Gt | Sy=s] Monte Carlo: Approximate because of F

= Er|Rty1 + 7G| Se=5]

|
EU'
-

I

B VUW(StJrl) ‘ St = 3] Dynamic programming:
Approximate because v; hot known

n
J7T-

TD(0): Approximate because of E and vz not known

TD(0) Algorithm

Tabular TD(0) for estimating v,

Input: the policy m to be evaluated
Algorithm parameter: step size o € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S)« V(S)+alR+V(S) -V (S)
S+ 5

until S i1s terminal

Question: What information does this algorithm use”?

1D for Control

 We can plug ID prediction into the generalized policy iteration
framework

* Monte Carlo control loop:

1. Generate an episode using estimated 11

2. Update estimates of Q and 1T

e On-policy TD control loop:

3. Take an action according to

4, Update estimates of Q and 11

On-Policy TD Control

Sarsa (on-policy TD control) for estimating @ ~ ¢,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @) (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S,4) + a[R+~vQ(S", A") — Q(S, A)]
S+ 5 A+ A

until S is terminal

Question: \What information does this algorithm use”?

Question: Will this estimate the Q-values of the optimal policy?

Actual Q-Values vs.
Optimal Q-Values

e Just as with on-policy Monte Carlo control, Sarsa does not
converge to the optimal policy, because it always chooses an
£-greedy action

* And the estimated Q-values are with respect to the
actual actions, which are g-greedy

* Question: Why is it necessary to choose g£-greedy actions?

 What if we acted g-greedy, but learned the Q-values for the
optimal policy?

Off-Policy TD Control

Q-learning (off-policy TD control) for estimating 7 ~ ,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + oz[R + ymax, Q(S’,a) — Q(S, A)}
S+ 5

until .S 1s terminal

Question: What information does this algorithm use”?

Question: Why aren't we estimating the policy T explicitly?

Example: The Cliff

y=1 (undiscounted)
R=-1

Safer path

Optimal path

S The Cliff G

Agent gets -1 reward until they reach the goal state

Step into the Cliff region, get reward -100 and go back to start

Question: How will Q-Learning estimate the value of state?

Question: How will Sarsa estimate the value of state?

Performance on The Cliff

Sarsa
D5 -
Sum of _50 -
rewards Q-learning
during
episode s
-100 I I | | I
0 100 200 300 400 500
Episodes

Q-Learning estimates optimal policy, but Sarsa consistently
outperforms Q-Learning. (why?)

Summary

Temporal Difference Learning bootstraps and learns from experience

 Dynamic programming bootstraps, but doesn't learn from
experience (requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap

Prediction: TD(0) algorithm
Sarsa estimates action-values of actual -greedy policy

Q-Learning estimates action-values of optimal policy while
executing an £-greedy policy

