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Recap: In-Place
terative Policy evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 87, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v <+ V(s)

V(s) < >, m(als) X, p(s',r]s,a)[r + 7V (s")]
A < max(A, |v — (s)])
until A < 6

 The updates are in-place: we use new values for V(s)
immediately instead of waiting for the current sweep to
complete

* These are expected updates: Based on a weighted average
(expectation) of all possible next states



Recap:
Policy Improvement | heorem
Let 1 and 11’ be any pair of deterministic policies.
f g (s,7(s)) > v, (s) VseESJ,

then v (s) >2v.(s) Vsed.

f you are never worse off at any state by following 11” for
one step and then following 11 forever after, then following 1’
forever has a higher expected value at every state




Policy Improvement | heorem
Proof
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Greedy Policy Improvement

Given any policy 11, we can construct a new greedy policy 11’
that Is guaranteed to be at least as good.:

7'(s) = argmax g (s, a)

argmax E[R, . +yv,(Sr. ) ]S, = 5,4, =d]

arg max Z p(s,,r|s,a) [r +- yvﬂ(s’)] .
“ s’ r
e |f this new policy is not better than the old policy, then
VH(S) = Vﬂ’(S) for all s (why?) Because policy improvement theorem guarantees it is
at least as good, so only way for it not to be better is to be the same.

e Also means that the new (and old) policies are optimal (why?)

If state values are the same after this update, then the Bellman optimality equation is satisfied,
and v* Is the unigque solution to the Bellman optimal



Policy lteration
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Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € 8: This is a lot of iterations!

v V(s) - Is it necessary to run to
V(s) < > o, p(s,r|s,7(s)) r+V(s")] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax, ) ., .p(s',7|s,a) r+V(s")]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2




Value [teration

Value iteration interleaves the estimation and improvement steps:
Vk+1(S) = max [ [Rt+1 T VVk(StH) ‘ St = 93, At — Cl]

a

= max Zp(S', rls,a) [’” T VVk(S,)]

s'.r

Value Iteration, for estimating ™ ~ .,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

A+ 0

Loop for each s € o:
v <+ V(s)
V(s) < max, ), .p(s',7|s,a) r+V(s")]
A +— max(A, v —V(s)|)

until A < 6

Output a deterministic policy, m =~ 7, such that
7(s) = argmax,, ZS,’rp(S/’ r|s,a) [7“ + vV(S/)]




Example: Blackjack

Player gets two cards, dealer gets 1

Player can hit (get a new card) as many times as they like, or

stick (stop hitting)

After the player is done, the dealer hits / sticks according to a
fixed policy

Whoever has the most points (sum of card values) wins

SU

, If you have more than 21 points, you lose immediately

("bust”)



Simulating Blackjack

* Given a policy for the player, it is very easy to simulate a
game of Blackjack

* Question: Is it easy to compute the full dynamics”?

* Question: Is it easy to run iterative policy evaluation?



EXperience vs. expectation

e |n order to compute expected updates, we need to know the
exact probability of every possible transition

o Often we don't have access to the full probability distribution,
but we do have access to samples of experience

1. Actual experience: \We want to learn based on interactions
with a real environment, without knowing its dynamics

2. Simulated experience: \We can simulate the dynamics,
but we don't have an explicit representation of transition
probabllities, or there are too many states



Monte Carlo Estimation

* Question: \What was Monte Carlo estimation the last time
we studied it (in Supervised Learning?)

* |nstead of estimating expectations by a weighted sum over
all possibilities, estimate expectation by averaging over a
sample drawn from the distribution:

n

1
[ X] = ;f(X)x R ;Zx,- where x; ~ f

=1




Monte Carlo Prediction

* Use alarge sample of episodes generated by a policy 1T to
estimate the state-values vx(s) for each state s

* We will consider only episodic tasks for now

* Question: What is the return G; for state Si=s in a given
episode?

* We can estimate the expected return vz (s) = E[G: | St=s] by

averaging the returns for that state in every episode
containing a visit to s



Flrst-visit
Monte Carlo Prediction

First-visit MC prediction, for estimating V ~ v,

Input: a policy m to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: So, Ao, R1,S51, A1, Ra, ..., S7_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—1,T—2,...,0:
G+ VG + Ry
Unless S; appears in Sp, S1,...,5:_1:
Append G to Returns(St)
V' (S:) + average(Returns(St))



Monte Carlo vs.
Dynamic Programming

Ilterative policy evaluation uses the estimates of the
next state's value to update the value of this state

a state's estimate

Monte Carlo estimate of each state's value is

e Only needs to compute a single transition to update I
!
Independent from estimates of other states' values :

 Needs the entire episode to compute an update I

 (Can focus on evaluating a subset of states if desired



Summary

* Given any policy 1, we can compute a greedy improvement 11’ by
choosing highest expected value action based on vy

* Policy iteration: Repeat:
Greedy improvement using vz, then recompute v

* Value iteration: Repeat:
Recompute v by assuming greedy improvement at every update

* Monte Carlo estimation estimates values by averaging returns over
sample episodes

* Does not require access to full model of dynamics



