Optimality and
Dynamic Programming

CMPUT 366: Intelligent Systems

| ecture Outline

. Assignment #3
. Recap

. Optimality

. Policy Evaluation

. Policy Improvement

L abs & Assignment #3

e Assignment #3 is due Mar 25 (next Monday) before lecture

e Today's lab is from 5:00pm to 7:50pm in CAB 235
 Not mandatory
e Opportunity to get help from the TAS

« mlpl and ecnn need to train and evaluate the specified models
* frain: fit parameters using provided training dataset

* evaluate: compute loss on both provided test datasets

Recap: Value Functions

State-value function

V][(S) = _;z[Gt‘Sz = 5]

— Tz [Z Y Riierr | S = S]
k=0

Action-value function

q,(s,a) =E_[G|S, =s,A, =da]

= Ly [Z 7th+k+1 5 =8, A; = a]
k=0

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition
called the Bellman equation:

VJZ'(S) = _n[Gt‘St = 5]
= E R + 7G| S, = 5]

— Zﬂ(a\S)Z ZP(S’,HS» a) [r+ YEAG 1541 = S,]]

— Z n(al s) Zp(s’, r|s,a) [r + }/vﬂ(S')]

* vz IS the unique solution to r's Bellman equation

* [here is also a Bellman equation for 11's action-value function

Recap: GridWorld Example

3.3

8.8

4.4

5.3

1.5

+0

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

AI

-1.0

0.4

0.4

-0.6

-1.2

Reward dynamics

-1.9

-1.3

-1.2

1.4

-2.0

State-value function v for

random policy
(als) = 0.25

GridWorld with
Bounds Checking

What about a policy where we never try to go over an edge”?

A B 3.3/ 8.8/ 4.4/ 5.3|1.5 6.7 |10.8/6.4 | 6.7 | 4.3
+5 1.5/3.0/ 2.3/ 1.9/ 0.5 4.2|4.7|3.7|3.4 |28

H0| | B' 0.1/0.7{ 0.7/ 0.4|-0.4 2424211917
-1.0/-0.4/-0.4,-0.6-1.2 1.5(1.4[1.3]1.2|1.1

A -1.9/-1.3-1.2/-1.4)-2.0 1.1/1.0(0.9|/0.9|0.9

State-value function v for

random policy
1(als) = 0.25

State-value function vy, for

Reward dynamics bounded random policy 115

Optimality

Question: What is an optimal policy?

A policy 11 is (weakly) better than a policy I’ if it is better for all s € J”:
r>2n = v(s)>vAs) VseS

An optimal policy ™ Is weakly better than every other policy

All optimal policies share the same state-value function: (why?)

V:(s) = maxv_(s)

Also the same action-value function:

g:(s,a) = max q (s, a)

Bellman Optimality Equations

* " must satisty the Bellman eqguation too

* |nfact, it can be written in a special, policy-free way because
we kKnow that every state value is maximized by I1™:

v«(s) = max g, (s, a)
a

=max E_[G,|S,=5,A, = d]

=max E_[R, +7G |5, =5,A,=dl

A

=max E[R, | +yv(5,.)]S, = 5,4, = da]

a

— max Zp(s’, r ‘ S, CZ)[I’ —+ }/V*(S/)]

s’ r

Bellman Optimality Equations

() .
ve(s) = max E[R, .| + yvi(S,)| S, = 5,4, = a] ?45\
a

— max Zp(s', rls,a)lr + yv«(s)] A Afr

s'.r

Q*(Sa CZ) — I

(Q*)
Ripr + y mdx q«(S,.1,a") S, = 5,A, = a] A
a
S/
— ZP(S', r|s,a)|r+ymax g.(s’ a’)] max/8\ /8\
‘ /

s'.r

Optimal GridWorld

22.0

24.4

22.0

19.4

17.5

B
+§
0| | B’

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

AI

16.0

17.8

16.0

14.4

13.0

Gridworld

14.4

16.0

14.4

13.0

11.7

IR

N
T
:
T
T

LILIL L

RN
RRREE

~
x

Policy Evaluation

Question: How can we compute v;?

1. We know that vz Is the unique solution to the Bellman
eguations, so we could just solve them

* put that is tedious and annoying and slow
* Also requires a complete model of the dynamics

2. lterative policy evaluation

* [akes advantage of the recursive formulation

terative Policy Evaluation

* |terative policy evaluation uses the Bellman equation as an
update rule:

=Ryt + 7S |5, =]
Z n(als) Z p(s’,rl|s,a) [r ;/vk(s’)]

Vir1(8)

* vz IS afixed point of this update, by definition

* Furthermore, starting from an arbitrary vo, the sequence {vi]
will converge 10 vy as K

IN-Place
terative Policy evaluation

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 87, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v <+ V(s)

V(s) < >, m(als) X, p(s',r]s,a)[r + 7V (s")]
A < max(A, |v — (s)])
until A < 6

 [he updates are in-place: we use new values for V(s)
immediately instead of waiting for the current sweep to
complete (why?)

* These are expected updates: Based on a weighted average
(expectation) of all possible next states (instead of what?)

terative Policy Evaluation

+0

AI

Reward dynamics

0.0 | 00 | 0.0 | 0.0 | 0.0

00| 00| 0.0 | 0.0 | 0.0

00| 00| 0.0 | 0.0 | 0.0

0.0 | 00 | 0.0 | 0.0 | 0.0

0.0 | 00 | 0.0 | 0.0 | 0.0
V at k=0

terative Policy evaluation

N GridWorld

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 S 0.6

-03|1 21 | 09 | 13 | 0.2

-03| 04 | 0.3 | 04 | -0.1

-03| 0.0 | 0.0 { 0.1 | -0.2

-05 | -03|-03|-0.3| -0.6
V at k=1

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

14 | 9.7 | 3.7 | 63 | 1.0

04 | 25 |18 | 1.7 | 04

-0.2 | 06 | 06 | 0.5 | -0.1

-05| 00| 00 | 0.0 | -0.5

-1.0| -06 | -05|-05 | -1.0
V at k=2

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

34 | 89 | 45 | 5.3 | 1.5

16 | 3.0 | 23 | 1.9 | 0.6

01 | 0.8 | 0.7 | 04 | -04

-10| -04 | -0.3 | -0.6 | -1.2

-19|-13|-12|-14]| -2.0
V at k=10,000

Policy Improvement [heorem

Let 1 and 11’ be any pair of deterministic policies.
f g (s,7'(s) >v.(s) VseS,

then v (s) >2v.(s) Vsed.

f you are never worse off at any state by following 11” for
one step and then following 11 forever after, then following 1’
forever has a higher expected value at every state

Policy Improvement | heorem
Proof

43[Rt+1 + WUW(Sﬂ-l) | St =S, At:W/(S)]

= Er[Rip1 + Y0 (Se41) | Se=5]

< Er[Ris1 + YGn(Seq1, 7 (Ses1)) | Se=4]

= Er[Riy1 + vEr[Riro + Y0 (Si12)[Se11, A1 =7 (Se41)] | Si=s]
o :Rt+1 +vRiqo + ’YQUW(SH-Q) } St :S]

e[Rip1 + YRz + 7 Reys + 7 vn(Siqs) | Si=s]

A

AN

| Rey1 + YRivo + YV Rips + V' Reya + -+ | Sp=35]

(VP (S)

1IN

Greedy Policy Improvement

Given any policy 11, we can construct a new greedy policy 11’
that Is guaranteed to be at least as good.:

7'(s) = argmax g (s, a)

argmax E[R, . +yv,(Sr.)]S, = 5,4, =d]

arg max Z p(s,,r|s,a) [r +- yvﬂ(s’)] .
“ s’ r
e |f this new policy is not better than the old policy, then
VH(S) = Vﬂ’(S) for all s (why?) Because policy improvement theorem guarantees it is
at least as good, so only way for it not to be better is to be the same.

e Also means that the new (and old) policies are optimal (why?)

If state values are the same after this update, then the Bellman optimality equation is satisfied,
and v* Is the unigque solution to the Bellman optimal

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € 8: This is a lot of iterations!

v V(s) - Is it necessary to run to
V(s) < > o, p(s,r|s,7(s)) r+V(s")] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s',7|s,a) r+V(s")]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:
Vk+1(S) = max [[Rt+1 T VVk(StH) ‘ St = 93, At — Cl]

a

= max Zp(S', rls,a) [’” T VVk(S,)]

s'.r

Value Iteration, for estimating ™ ~ .,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

A+ 0

Loop for each s € o:
v <+ V(s)
V(s) < max,), .p(s',7|s,a) r+V(s")]
A +— max(A, v —V(s)|)

until A < 6

Output a deterministic policy, m =~ 7, such that
7(s) = argmax,, ZS,’rp(S/’ r|s,a) [7“ + vV(S/)]

Summary

An optimal policy has higher state value than any other policy at
every state

A policy's state-value function can be computed by iterating an
expected update based on the Bellman equation

Given any policy 11, we can compute a greedy improvement 1’ by
choosing highest expected value action based on vy

Policy iteration: Repeat:
Greedy improvement using vz, then recompute vr

Value iteration: Repeat:
Recompute vir by assuming greedy improvement at every update

