Policies and Value Functions

CMPUT 366: Intelligent Systems

S&B §3.5

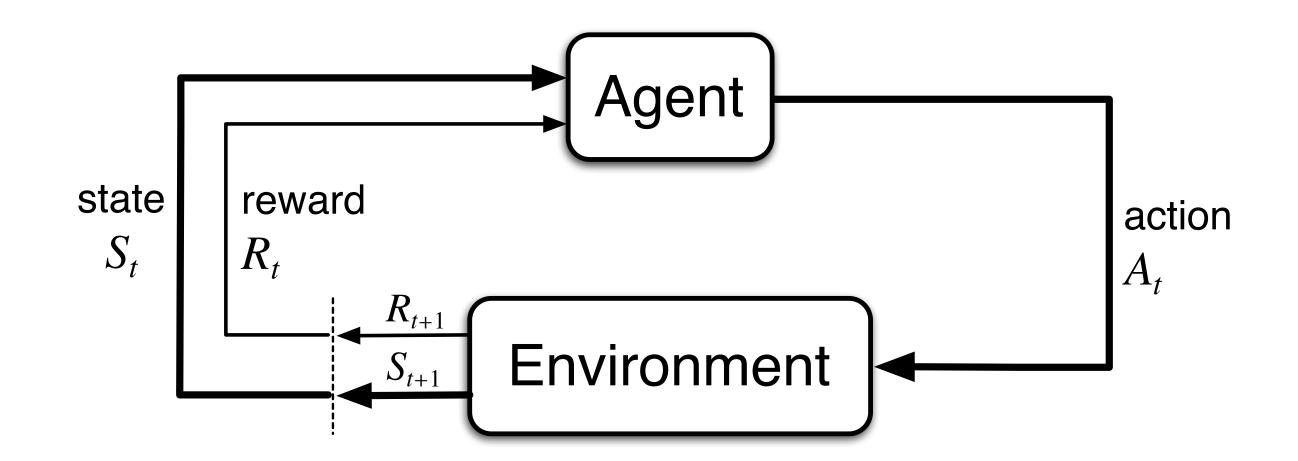
Lecture Outline

- 1. Recap
- 2. Policies & Value Functions
- 3. Bellman Equations

Recap: Interacting with the Environment

At each time t = 1, 2, 3, ...

- 1. Agent receives input denoting current state S_t
- 2. Agent chooses action A_t
- 3. Next time step, agent receives reward R_{t+1} and new state S_{t+1} , chosen according to a distribution p(s',r|s,a)



This interaction between agent and environment produces a trajectory: S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , R_3 ,...

Policies

Question: How should an agent in a Markov decision process choose its **actions**?

- Markov assumption: The state incorporates all of the necessary information about the history up until this point
 - i.e., Probabilities of future rewards & transitions are the same from state S_t regardless of how you got there
- So the agent can choose its actions based only on St
- This is called a **policy**: $\pi(a|s) \in [0,1]$ is the probability of taking **action** a given that the **current state** is s

State-Value Function

- Once you know the **policy** π and the **dynamics** p, you can compute the probability of every possible state transition starting from any given state
- It is often valuable to know the expected return starting from a given state s under a given policy π (why?)
- The state-value function v_{π} estimates this quantity:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right]$$

Action-Value Function

The action-value function $q_{\pi}(s,a)$ estimates the expected return G_t starting from state s if we

- 1. Take action a in state $S_t = s$, and then
- 2. Follow policy π for every state S_{t+1} afterward

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s, A_t = a \right]$$

Bellman Equations

Value functions satisfy a recursive consistency condition called the **Bellman equation**:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s]$$

$$= \sum_{a} \pi(a | s) \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{a} \pi(a | s) \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

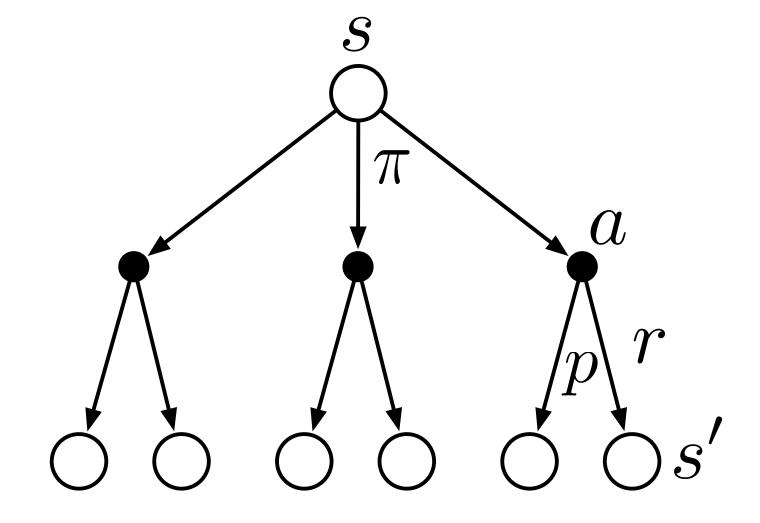
- v_{π} is the unique solution to π 's Bellman equation
- There is also a Bellman equation for π 's action-value function

Backup Diagrams

Backup diagrams help to visualize the flow of information back to a state from its successor states or action-state pairs:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

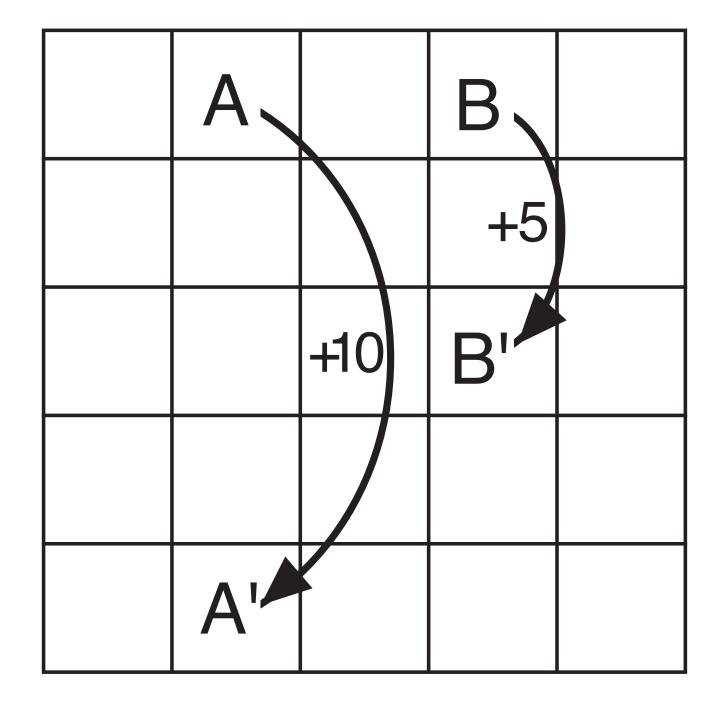
$$= \sum_{a} \pi(a | s) \sum_{s',r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$



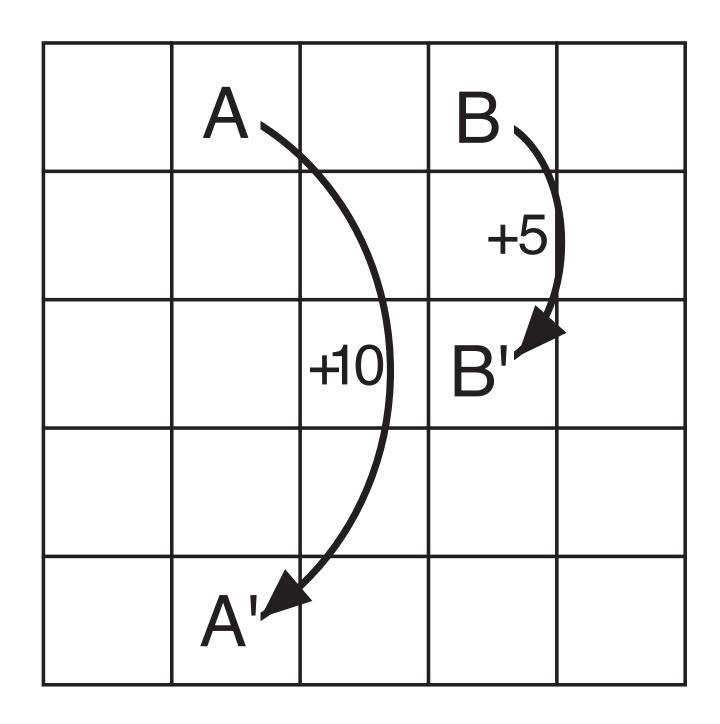
Backup diagram for v_{π}

Return to GridWorld

- At each cell, can go north, south, east, west
- Try to go off the edge: reward of -1
- Leaving state A: takes you to state A', reward of +10
- Leaving state B: takes you to state B', reward of +5



Return to GridWorld



3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Reward dynamics

State-value function v_{II} for random policy $\pi(a|s) = 0.25$

Summary

- Policies map states to (distribution over) actions
- Given a policy π , every state s has an expected value $V_{\pi}(s)$
 - and every action a from state s has value $q_{\pi}(s,a)$
 - These are the state-value and action-value functions
- State-value and action-value functions satisfy the Bellman equations