
Markov Decision
Processes

CMPUT 366: Intelligent Systems 
 

S&B §3.0-3.4

Lecture Outline

1. Assignment 3

2. Recaps

3. Markov Decision Processes

4. Returns & Episodes

Assignment #3

What are we supposed to do with target and proposal?

Recap: Deep Learning
• Feedforward neural networks are extremely flexible

parametric models that can be trained by gradient descent

• Convolutional neural networks add pooling and convolution
operations

• Vastly more efficient to train on vision tasks, due to fewer
parameters and domain-appropriate invariances

• Recurrent neural networks process elements of a sequence
one at a time, usually while maintaining state

• Same set of weights applied to each element

Recap: Supervised Learning
Neural networks are generally used to solve supervised
learning tasks: Selecting a hypothesis h : X → Y that maps
from input features to target features

Training 
Examples Model

Loss
Metric

̂yLy

x

Training time

Population Model
x ̂y

Test time

Example: CanBot
• CanBot's job is to find and recycle empty cans

• At any given time, its battery charge is either high or low

• It can do three actions: search for cans, wait, or recharge

• Goal: Find cans efficiently without running out of battery charge

Questions:

1. Is this an instance of a supervised learning problem?

2. Is this an instance of a search problem?

A: No. We don't know the right answer,

and we need to make decisions online.

A: No. We need to make decisions online, and

we may not have a well-defined goal state, and

our dynamics may not be deterministic.

Reinforcement Learning
In a reinforcement learning task, an agent learns how to act
based on feedback from the environment.

• The agent's actions may change the environment

• The "right answer" is not known

• The task may be episodic or continuing

• The agent makes decisions online: determines how to act
while interacting with the environment

Interacting with the Environment
At each time t = 1, 2, 3, ...

1. Agent receives input denoting
current state St

2. Agent chooses action At

3. Next time step, agent receives
reward Rt+1 and new state St+1,
chosen according to a
distribution p(s',r|s,a)

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

This interaction between agent

and environment produces a trajectory:

S0, A0, R1, S1, A1, R2, S2, A2, R3,...

Markov Decision Process
Definition: 
A Markov decision process is a tuple (S, A, R, p), where

• S is a set of states,

• A is a set of actions,

• R ∈ ℝ is a set of rewards,

• p(s',r|s,a) ∈ [0,1] defines the dynamics of the process, and

• the probabilities from p completely characterize the environment's
dynamics

Dynamics
The four-argument dynamics function returns the probability of
every state transition:  

It is often convenient to use shorthand notation rather than the
full four-argument dynamics function: 

p(s′�, r |s, a) ≐ Pr(St = s′�, Rt = r |St−1 = s, At−1 = a)

p(s′�|s, a) ≐ Pr(St = s′�|St−1 = s, At−1 = a) = ∑
r∈ℛ

p(s′�, r |s, a)

r(s, a) ≐ 𝔼[Rt |St−1 = s, At−1 = a] = ∑
r∈ℛ

r ∑
s′�∈𝒮

p(s′�, r |s, a)

r(s, a, s′�) ≐ 𝔼[Rt |St−1 = s, At−1 = a, St = s′�] = ∑
r∈ℛ

r
p(s′�, r |s, a)
p(s′�|s, a)

CanBot as a Reinforcement
Learning Agent

Question: How can we represent CanBot as a reinforcement
learning agent?

• Need to define states, actions, rewards, and dynamics

52 Chapter 3: Finite Markov Decision Processes

Example 3.3 Recycling Robot

A mobile robot has the job of collecting empty soda cans in an o�ce environment. It
has sensors for detecting cans, and an arm and gripper that can pick them up and place
them in an onboard bin; it runs on a rechargeable battery. The robot’s control system
has components for interpreting sensory information, for navigating, and for controlling
the arm and gripper. High-level decisions about how to search for cans are made by a
reinforcement learning agent based on the current charge level of the battery. To make a
simple example, we assume that only two charge levels can be distinguished, comprising
a small state set S = {high, low}. In each state, the agent can decide whether to (1)
actively search for a can for a certain period of time, (2) remain stationary and wait
for someone to bring it a can, or (3) head back to its home base to recharge its battery.
When the energy level is high, recharging would always be foolish, so we do not include it
in the action set for this state. The action sets are then A(high) = {search, wait} and
A(low) = {search, wait, recharge}.
The rewards are zero most of the time, but become positive when the robot secures an
empty can, or large and negative if the battery runs all the way down. The best way to
find cans is to actively search for them, but this runs down the robot’s battery, whereas
waiting does not. Whenever the robot is searching, the possibility exists that its battery
will become depleted. In this case the robot must shut down and wait to be rescued
(producing a low reward). If the energy level is high, then a period of active search can
always be completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability ↵ and reduces
it to low with probability 1 � ↵. On the other hand, a period of searching undertaken
when the energy level is low leaves it low with probability � and depletes the battery
with probability 1 � �. In the latter case, the robot must be rescued, and the battery is
then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of �3 results whenever the robot has to be rescued. Let rsearch and
rwait, with rsearch > rwait, respectively denote the expected number of cans the robot
will collect (and hence the expected reward) while searching and while waiting. Finally,
suppose that no cans can be collected during a run home for recharging, and that no cans
can be collected on a step in which the battery is depleted. This system is then a finite
MDP, and we can write down the transition probabilities and the expected rewards, with
dynamics as indicated in the table on the left:

s a s
0

p(s
0 |s, a) r(s, a, s

0
)

high search high ↵ rsearch

high search low 1 � ↵ rsearch

low search high 1 � � �3

low search low � rsearch

high wait high 1 rwait

high wait low 0 -

low wait high 0 -

low wait low 1 rwait

low recharge high 1 0

low recharge low 0 -

search

high low
1, 0

search

recharge

wait

wait

�, rsearch

↵, rsearch 1�↵, rsearch

1��, �3

1, rwait

1, rwait

Note that there is a row in the table for each possible combination of current state, s,
action, a 2 A(s), and next state, s

0. Some transitions have zero probability of occurring,
so no expected reward is specified for them. Shown on the right is another useful way of

Reward Hypothesis

Definition: Reward hypothesis 
An agent's goals and purposes can be entirely represented as
the maximization of the expected value of the cumulative sum
of a scalar signal.

Returns for Episodic Tasks
Question: What does it mean to maximize the expected value
of the cumulative sum of rewards?

Definition: A task is episodic if it ends after some finite
number T of time steps in a special terminal state ST.

Definition: The return Gt after time t is the sum of rewards
received after time t: Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT

Answer: The return Gt is a random variable. In an episodic
task, we want to maximize its expected value 𝔼[Gt].

Returns for Continuing Tasks
Definition: A task is continuing if it does not end (i.e., T=∞).

• In a continuing task, we can't just maximize the sum of rewards
(why?)

• Instead, we maximize the discounted return: 
 
 

• Returns are recursively related to each other: 
 

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + …

=
∞

∑
k=0

γkRt+k+1

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + …
= Rt+1 + γGt+1

Summary
• Supervised learning models are trained offline using

labelled training examples, and then make predictions

• Reinforcement learning agents choose their actions
online, and update their behaviour based on rewards from
the environment

• We can formally represent reinforcement learning
environments using Markov decision processes, for both
episodic and continuing tasks

• Reinforcement learning agents maximize expected returns

