
Autoencoders

CMPUT 366: Intelligent Systems 
 

GBC 14.0-14.5

Lecture Outline

1. Recap

2. Unsupervised Learning

3. Autoencoders

Recap:
Recurrent Neural Networks

• Recurrent networks: Specialized architecture for sequences

• Process each element of the sequence individually using the
same parameters

• Recurrent hidden units: stage t output is input to stage t+1

• Gated units (e.g., LSTM) allow mappings to vary dynamically

(Goodfellow 2016)

Recurrence through only the Output

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

U

V
W

o
(t�1)

o
(t�1)

hh

oo

yy

LL

xx

o
(t)

o
(t)

o
(t+1)

o
(t+1)

L(t�1)L(t�1) L(t)L(t)
L

(t+1)
L

(t+1)

y
(t�1)

y
(t�1)

y
(t)

y
(t)

y
(t+1)

y
(t+1)

h
(t�1)

h
(t�1)

h
(t)

h
(t)

h
(t+1)

h
(t+1)

x
(t�1)

x
(t�1)

x
(t)

x
(t)

x
(t+1)

x
(t+1)

WW W W
o

(...)
o

(...)

h
(...)

h
(...)

V V V

U U U

Unfold

Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t, the input is xt, the hidden layer activations are
h

(t), the outputs are o
(t), the targets are y

(t) and the loss is L(t). (Left)Circuit diagram.
(Right)Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by figure 10.3. The RNN
in figure 10.3 can choose to put any information it wants about the past into its hidden
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o, and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h

is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in section 10.2.1.

380

Figure 10.4 (Goodfellow 2016)

LSTM
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This

409

Figure 10.16

Example: Dots & Squares

• Question: How many pixels are in each of these 50x50 images?

• Question: How many numbers would you need to to write down
to represent these images?

Compression

• We can often represent complicated data (e.g., images) in a
very compressed form by exploiting structure

• Question: Why would this be valuable?

1. Compression: Storing less information is better!

2. Learning features: Rather than having to learn underlying
structure for each task, learn it once, then input
structured representation directly to supervised learner

01000 11010
10001

00100

11111 0001101011 11011

00000

Unsupervised Learning

Unsupervised learning is any learning algorithm that operates
on input features but not target features

1. Feature learning: Learn underlying structure of examples

2. Generative models: Learn distribution over examples in
order to synthesize plausible instances

3. Dimensionality reduction: Learn small representations

Autoencoders
Autoencoder: A neural network that is trained to attempt to
copy its input to its output  
 
 
 
 
 
 
 

• Question: Why would this be valuable? (Goodfellow 2016)

Structure of an Autoencoder

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Figure 14.1

Input

Hidden layer (code)

Reconstruction

Autoencoders

• A network that is able to exactly copy its input to its output is
actually kind of useless

• If we make it impossible for the network to make a direct
copy, then it is forced to prioritize which aspects to copy

• Can often learn useful properties of the data

• E.g., "each image is a black square with 1-5 white dots"

Undercomplete
Autoencoders

Question: How can we force the autoencoder to
approximate instead of just making a trivial copy?

1. Make h have lower dimension than x

• E.g., only 5 hidden units for 50×50 image

2. Make f and/or g have low capacity

• E.g., linear g
(Goodfellow 2016)

Structure of an Autoencoder

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Figure 14.1

Input

Hidden layer (code)

Reconstruction

Regularized Autoencoders

3. Add a term to the cost function penalizing code
complexity

• L2/Ridge regularization: Penalize large values

• L1/Lasso regularization: Penalize nonzero values

L(θf, θg) = ℓ(r, x) + Ω(h)
= ℓ(g(f(x; θf); θg), x) + Ω(f(x; θf))

Stochastic Outputs

X Ycat Ydog Ypanda

1 0 0

0 1 0

X Ŷcat 
Pr(Y=cat | X)

Ŷdog 
Pr(Y=dog | X)

Ŷpanda 
Pr(Y=panda | X)

0.50 0.45 0.05

Stochastic Autoencoders

(Goodfellow 2016)

Stochastic Autoencoders

CHAPTER 14. AUTOENCODERS

Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.

xx rr

hh

pencoder(h | x) pdecoder(x | h)

Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, pencoder(h | x) for the encoder
and pdecoder(x | h) for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to
an encoding distribution pencoder(h | x), as illustrated in figure 14.2.

Any latent variable model pmodel(h, x) defines a stochastic encoder

pencoder(h | x) = pmodel(h | x) (14.12)

and a stochastic decoder

pdecoder(x | h) = pmodel(x | h). (14.13)

In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution pmodel(x, h). Alain et al.
(2015) showed that training the encoder and decoder as a denoising autoencoder
will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point
as its output.

The DAE training procedure is illustrated in figure 14.3. We introduce a
corruption process C(x̃ | x) which represents a conditional distribution over

510

Figure 14.2

• Decoder gives distribution over inputs given hidden layer

• Encoder gives distribution over hidden layer given inputs

Denoising Autoencoders

(Goodfellow 2016)

Denoising AutoencoderCHAPTER 14. AUTOENCODERS

x̃̃x LL

hh

f
g

xx

C(x̃ | x)

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)) (14.14)

where p̂data(x) is the training distribution.

511

Figure 14.3

C: corruption process
(introduce noise)

CHAPTER 14. AUTOENCODERS

x̃̃x LL

hh

f
g

xx

C(x̃ | x)

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)) (14.14)

where p̂data(x) is the training distribution.

511

4. Train on noisy version x̃ of the input x

• Loss computed by how well original x is reconstructed
from corrupted x̃

Representing Distributions

Question: What does the output layer look like
in a stochastic autoencoder?

• Indicator variables often won't work, since
the input features are usually unstructured
and high-dimensional

• Instead, usually learn mean and variance
of a Gaussian for each output unit

r

x

h

f

g

Summary
• Neural networks: Not just for supervised learning!

• Autoencoders: Input is x, output is r, loss is ℓ(x,r)

• Hidden layer h can be interpreted as a code that captures the most
important properties of the inputs

• To avoid trivial copying:

1. Undercomplete autoencoders: 
Small dimension h, small capacity encoder/decoder

2. Regularization: Penalize complex codes

3. Denoising: Train on corrupted versions of the inputs

