
Labs & Assignment #2

• Assignment #2 was due Mar 4 (today) before lecture 

• Today's lab is from 5:00pm to 7:50pm in CAB 235 

• Last-chance lab for late assignments 

• Not mandatory 

• Opportunity to get help from the TAs
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Recap: 
Convolutional Neural Networks
• Convolutional networks: Specialized architecture for images 

• Number of parameters controlled by using convolutions 
and pooling operations instead of dense connections 

• Fewer parameters means more efficient to train

(Goodfellow 2016)

Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

Figure 9.6 (Images: Goodfellow 2016)(Goodfellow 2016)

2D Convolution
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Sequence Modelling
• For many tasks, especially involving language, we want to 

model the behaviour of sequences 

• Example: Translation 

• The cat is on the carpet  ⟹  Le chat est sur le tapis 

• Example: Sentiment analysis 

• This pie is great  ⟹  POSITIVE 

• This pie is okay, not great  ⟹  NEUTRAL



Sequential Inputs
Question: How should we represent sequential input to a 
neural network? 

1. 1-hot vector for each word  
(Sequence must be a particular length) 

2. 1-hot vector for last few words  
(n-gram) 

3. Single vector indicating each word that is present  
(bag of words)

...
the

carpet
cat

the

carpet

carpet

the

cat

The cat is on the carpet



Dynamical Systems
• A dynamical system is a system whose state at 

time t+1 depends on its state at time t: 
 

• An expression that depends on the same expression 
at an earlier time is recurrent. 

s

s(t) = f(s(t−1); θ)



Unfolding Computations

• A recurrent expression can be converted to a non-recurrent 
expression by unfolding: 
 
 

(Goodfellow 2016)

Classical Dynamical Systems

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to section 6.5.1 for a general introduction. In this section we explain
the idea of unfolding a recursive or recurrent computation into a computational
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s
(t) = f(s(t�1); ✓), (10.1)

where s
(t) is called the state of the system.

Equation 10.1 is recurrent because the definition of s at time t refers back to
the same definition at time t � 1.

For a finite number of time steps ⌧ , the graph can be unfolded by applying
the definition ⌧ � 1 times. For example, if we unfold equation 10.1 for ⌧ = 3 time
steps, we obtain

s
(3) =f(s(2); ✓) (10.2)

=f(f(s(1); ✓); ✓) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in
figure 10.1.
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Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t + 1. The same parameters (the same value
of ✓ used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external
signal x

(t),
s

(t) = f(s(t�1), x(t); ✓), (10.4)
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s(3) = f(s(2); θ)
= f( f(s(1); θ); θ)

(Image: Goodfellow 2016)



External Signals

• Dynamical systems can also be driven by external signals: 
 

• These systems can also be represented by non-recurrent, 
unfolded computations: 
 
 

s(t) = f(s(t−1), x(t); θ)

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h
(t) = f(h(t�1), x(t); ✓), (10.5)

illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h

(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h

(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h

(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h
(t�1)

h
(t�1)

h
(t)

h
(t)

h
(t+1)

h
(t+1)

x
(t�1)

x
(t�1)

x
(t)

x
(t)

x
(t+1)

x
(t+1)

h
(... )

h
(... )

h
(... )

h
(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a
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Recurrent Neural Networks
• Recurrent neural network: a specialized architecture for 

modelling sequential data 

• Input presented one element at a time 

• Parameter sharing by: 

• Treating the sequence as a system with state 

• Introducing hidden layers that represent state 

• Computing state transitions and output using 
same functions at each stage

carpet

x(6) =



Recurrent Hidden Units: 
Sequence to Sequence

(Goodfellow 2016)

Recurrent Hidden Units

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:
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Figure 10.3

• Input values x connected to hidden 
state h by weights U 

• Hidden state h mapped to output o 
by weights V 

• Hidden state h(t-1) connected to 
hidden state h(t) by weights W 

• Gradients computed by back 
propagation through time: from final 
loss all the way back to initial input. 

• All hidden states computed must be 
stored for computing gradients

(Image: Goodfellow 2016)



Recurrent Hidden Units:  
Sequence to Single Output

• Update state as inputs are provided 

• Only compute a single output at the end 

• W, U still shared at every stage 

• Back propagation through time still 
requires evaluating every state in 
gradient computation
(Goodfellow 2016)

Sequence Input, Single Output
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because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.
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Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o

(t) can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y(t) as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum
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(Image: Goodfellow 2016)



Encoder/Decoder Architecture 
for Sequence to Sequence

Can combine approaches for 
sequence-to-sequence: 

1. Accept entire input to construct a 
single "context" output C 

2. Construct new sequence using 
context C as only input

(Goodfellow 2016)

Sequence to Sequence 
Architecture
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10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in figure 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in figure 10.9 how an RNN can map a fixed-size vector to a
sequence. We have seen in figures 10.3, 10.4, 10.10 and 10.11 how an RNN can
map an input sequence to an output sequence of the same length.
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Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(ny)) given an input sequence
(x(1),x(2), . . . ,x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question
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Recurrence through 
(only) Outputs

• Can have recurrence go from 
output (at t-1) to hidden (at t) 
instead of hidden to hidden 

• Less general (why?) 

• Question: Why would we want to 
do this?

(Goodfellow 2016)

Recurrence through only the Output
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t, the input is xt, the hidden layer activations are
h

(t), the outputs are o
(t), the targets are y

(t) and the loss is L(t). (Left)Circuit diagram.
(Right)Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by figure 10.3. The RNN
in figure 10.3 can choose to put any information it wants about the past into its hidden
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o, and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h

is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in section 10.2.1.
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Teacher Forcing
• Dependence on previous 

step is only on output, not 
hidden state 

• Loss gradient depends 
only on a single transition 

• Training can be 
parallelized (don't need to 
compute previous states 
to compute current state)

(Goodfellow 2016)

Teacher Forcing
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Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left)At train time, we feed the correct output y
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set as input to h

(t+1). (Right)When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y
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o
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Long-Range Dependence

• Information sometimes needs to be 
accumulated for a long part of the 
sequence 

• But how long an individual piece of 
information should be accumulated is 
context-dependent 

• Often need to accumulate information 
in the state, and then forget it later

The submarine, which was the subject of a well known song by the Beatles, was yellow.

(Goodfellow 2016)

Recurrent Hidden Units
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information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:
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Long Short-Term Memory
• LSTM networks replace regular hidden 

units with cells 

• Input feature computed with regular neuron 

• Feature accumulated into state only if 
input gate allows it 

• State decays according to value of forget 
gate 

• Output can be shut off by the output gate(Goodfellow 2016)

LSTM
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This
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Summary
• Naively representing sequential inputs for a neural network 

requires infeasibly many input nodes (and hence parameters) 

• Recurrent neural networks are a specialized architecture for 
handling sequential inputs 

• State accumulates across input elements 

• Each stage computed from previous stage using 
same parameters 

• Long short-term memory (LSTM) cells allow context-dependent 
accumulation and forgetting


