Convolutional Neural Networks

CMPUT 366: Intelligent Systems

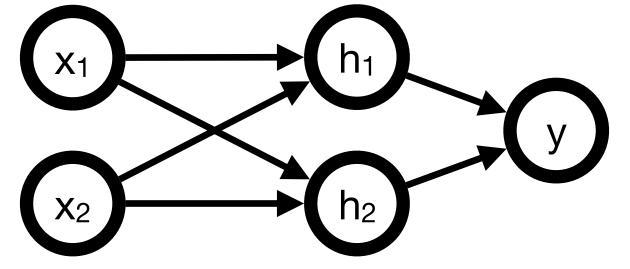
GBC §9.0-9.4

Lecture Outline

- 1. Recap
- 2. Training Neural Networks
- 3. Image Recognition
- 4. Convolutional Neural Networks

Recap: Neural Networks

Neural networks are compositions of units



- Each unit's inputs are outputs from previous layer's units
- Single unit h: Inputs x, weights w, bias b, activation g

$$h(\mathbf{x}; \mathbf{w}, b) = g(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

- Weights and biases are parameters of the model, set during training
- Neural networks are universal approximators

Neural Networks Parameters

A neural network is just a supervised model

$$y = f(\mathbf{x}; \theta)$$

- It is a function that takes inputs \mathbf{x} , and computes an output y based on parameters θ
- Question: What is θ in a feedforward neural network?

A: the weights and biases

Training Neural Networks

- Specify a loss L and a set of training examples $E=\{(\mathbf{x}^{(1)},y^{(1)}),...,(\mathbf{x}^{(n)},y^{(n)}),\}$
- Training by gradient descent:
 - 1. Compute loss on training data: $L(\mathbf{W}, \mathbf{b}) = \sum_{i} \ell\left(f(\mathbf{x}^{(i)}; \mathbf{W}, \mathbf{b}), y^{(i)}\right)$
 - 2. Compute gradient of loss: $\nabla L(\mathbf{W}, \mathbf{b})$
 - 3. Update parameters to make loss smaller:

$$\begin{bmatrix} \mathbf{W}^{new} \\ \mathbf{b}^{new} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{old} \\ \mathbf{b}^{old} \end{bmatrix} - \eta \nabla L(\mathbf{W}^{old}, \mathbf{b}^{old})$$

Image Classification

Problem: Recognize the handwritten digit from an image

• What are the inputs? A: pixels!

What are the outputs? A: one-hot vector

What is the loss?
 A: many possibilities log-loss, cross-entropy,
 0/1 (i.e., accuracy)

Image Classification with Neural Networks

How can we use a **neural network** to solve this problem?

- How to represent the inputs?
- How to represent the outputs?
- What are the parameters?
- What is the loss?

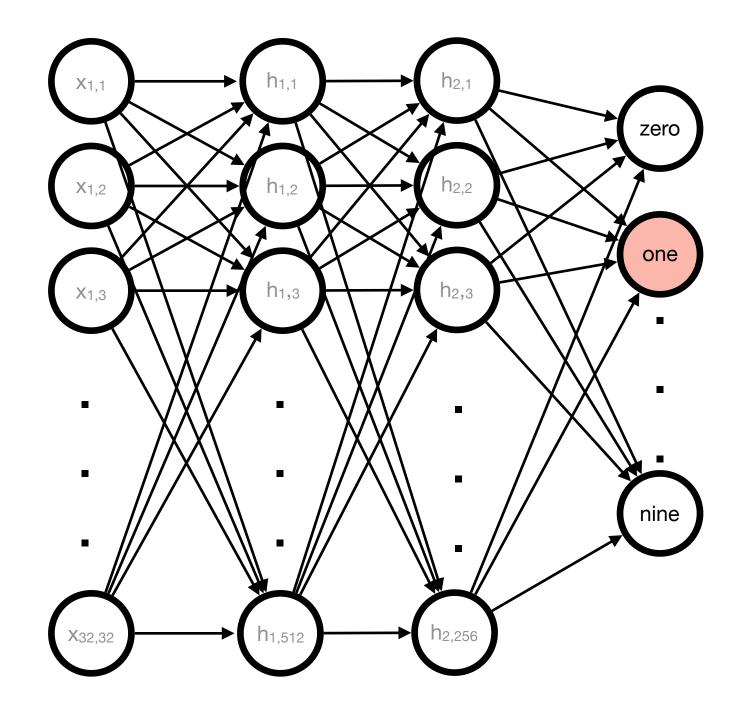
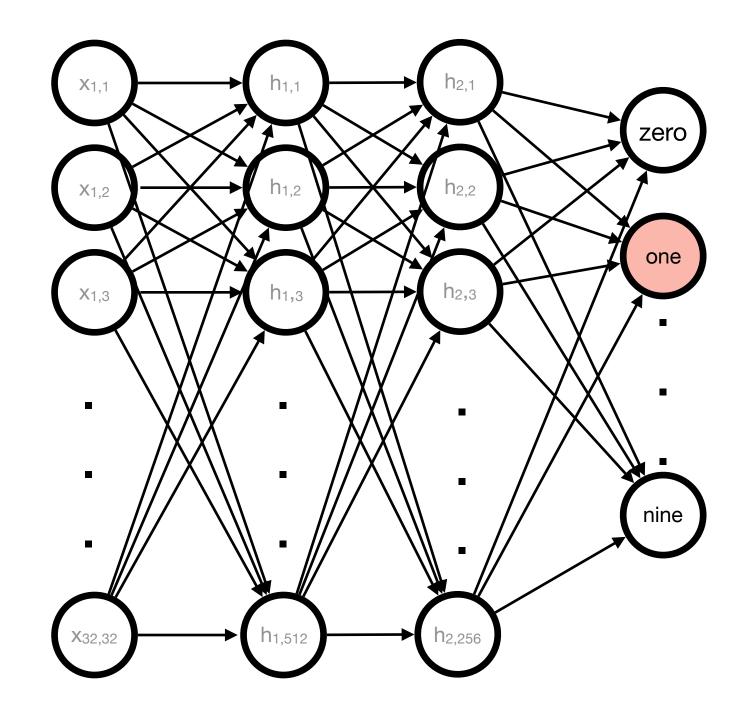
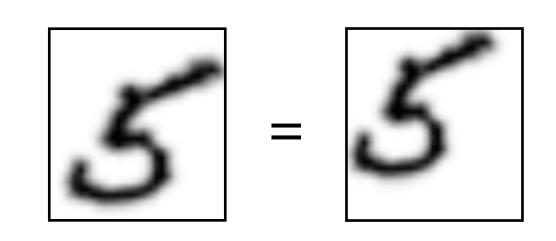


Image Recognition Issues

- For a large image, the number of parameters will be very large
 - For 32x32 greyscale image, hidden layer of 512 units hidden layer of 256 units, 1024×512 + 512×256 + 256×10 = 657,920 weights (and 1802 biases)
 - Needs lots of data to train
- Want to generalize over transformations of the input



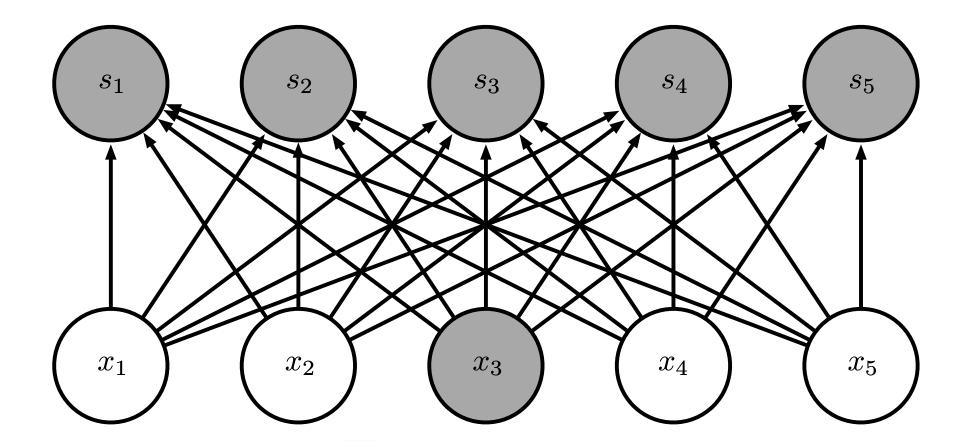


Convolutional Neural Networks

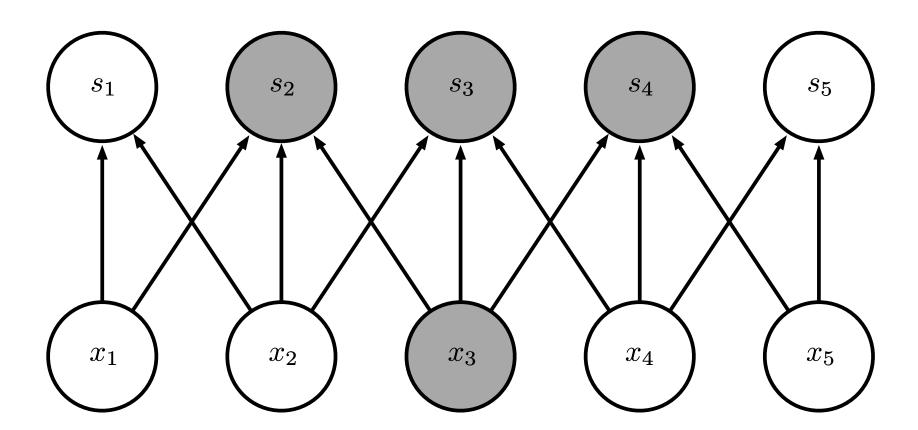
- Convolutional neural networks: a specialized architecture for image recognition
- Introduce two new operations:
 - 1. Convolutions
 - 2. Pooling
- Efficient learning via:
 - 1. Sparse interactions
 - 2. Parameter sharing
 - 3. Equivariant representations

Sparse Interactions

Dense connections



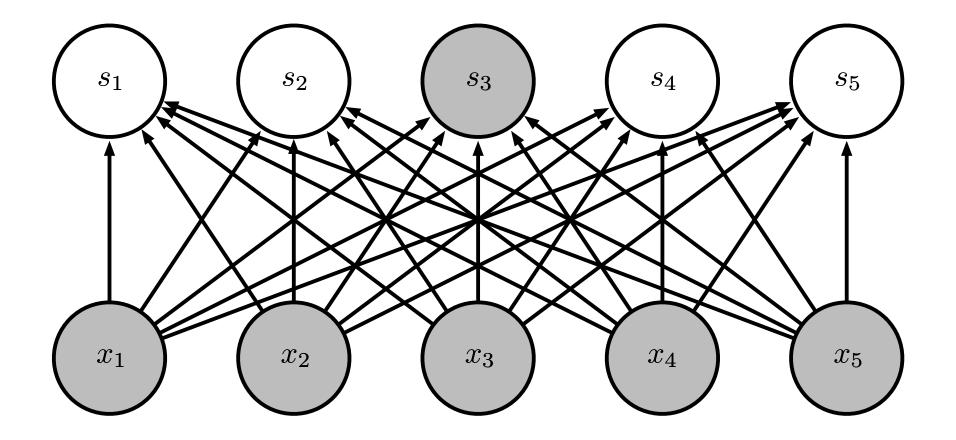
Sparse connections



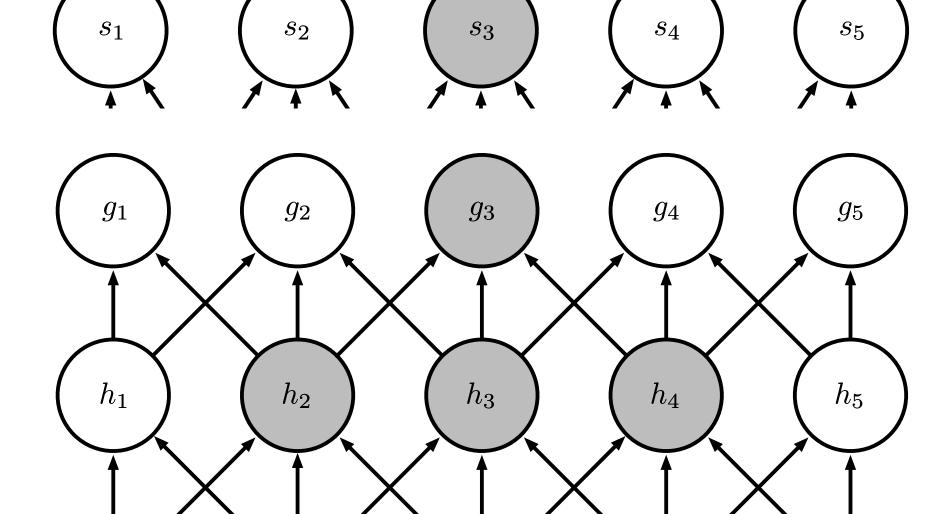
(Images: Goodfellow 2016)

Sparse Interactions

Dense connections



Sparse connections

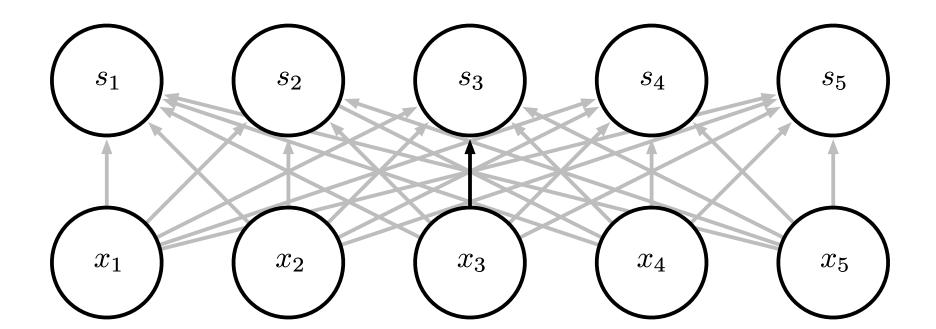


nages: Goodfellow 2016)

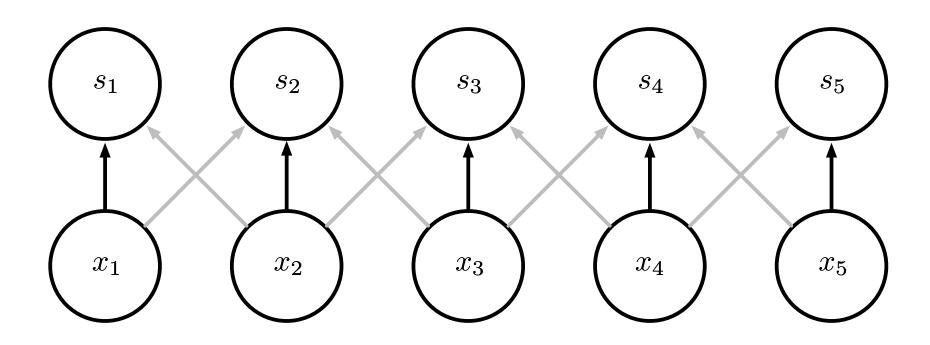
Parameter Sharing

 x_1 x_2 x_3 x_4 x_5

Traditional neural nets learn a unique value for each connection



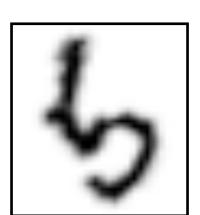
Convolutional neural nets constrains multiple parameters to be equal

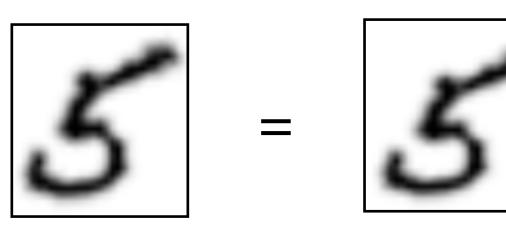


 s_4

Equivariant Representations

- We want to be able to recognize transformed versions of inputs we have seen before:
 - Translation (moved)
 - Rotation
- Without having been trained on all transformed versions





Multiplying Matrices and Vectors tiplying Matrices and Vectors

the most important operations involving matrices is multiplication of two set Tiheportaint production painting and the point of the production of the produc

tettis pet stemmen, Amanst Baise othehenne munither Cisunfinkense Br Kas. of shape matrix and betis of shapering two permeres matrices to gether.

the matrix product just by placing two or more matrices together, RecalPthat we can represent the 1

product operation is defined by vations in a neural network. By a

act operation is defined; by
$$\sum_{i=1}^{n} A_{i,k} B_{k,j}$$
. (2.5)

$$C_{i,j} = \sum_{k=1}^{r} A_{i,k}^{r} B_{k,j}.$$
e that the standard product of two matrices is *not* just a matrix containing

duct of the individual elements. Such an operation exists and is called the

this standart our Hadamard product, and is demoted as AutrR. c

f datepindividuality is the and perform same dimensionality is the product or y labe can think of the matsix emotive C = AB as computing

the dot product between row i of A and column j of B. The roduct between two vectors u of the same dimensionality is the p

et $x^{\top}y$. We can think of the matrix product $C^{\eta} = AB$ as computing match

t product between row i of \boldsymbol{A} and column j of \boldsymbol{B} .

$$\mathbf{h_1} = g_h \left(W^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right)$$

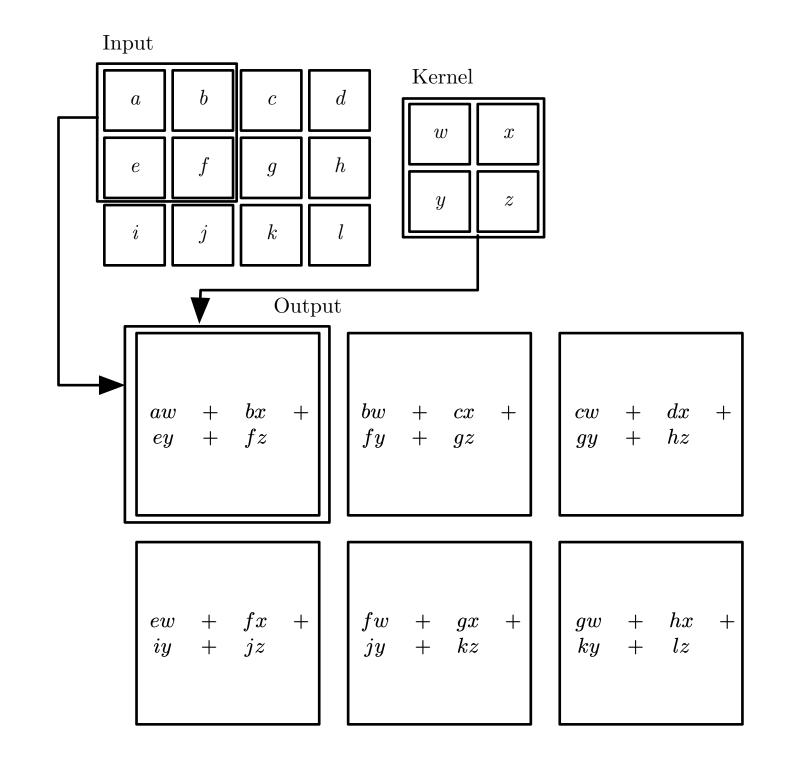
$$\mathbf{h_2} = g_h \left(W^{(2)} \mathbf{h_1} + \mathbf{b}^{(2)} \right)$$

$$\mathbf{y} = g_y \left(W^{(3)} \mathbf{h_2} + \mathbf{b}^{(3)} \right)$$

Operation: 2D Convolution

Convolution scans a small block of weights (called the **kernel**) over the elements of the inputs, taking **weighted averages**

- Note that input and output dimensions need not match
- Same weights used for very many combinations

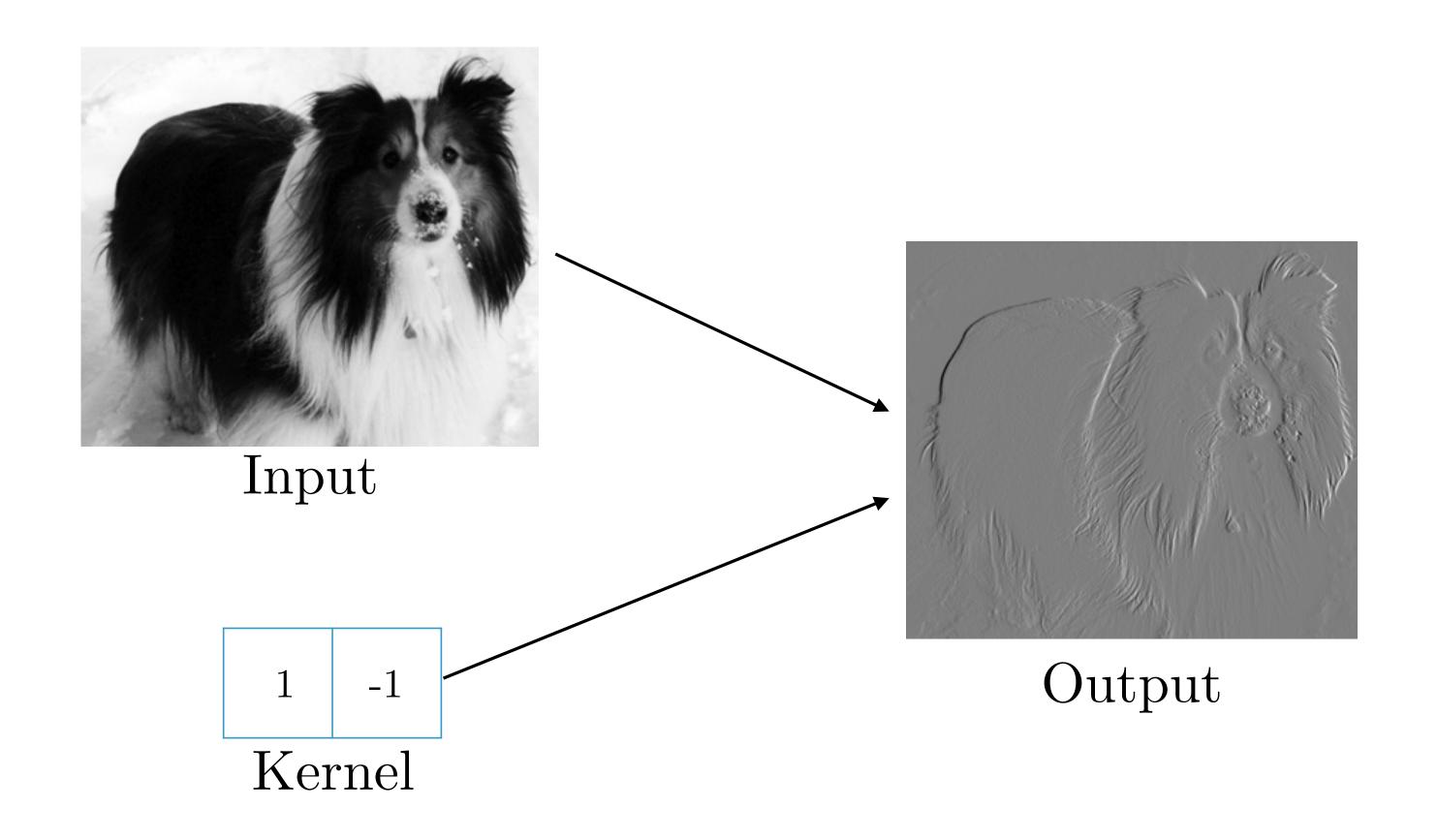


Replace Matrix Multiplication by Convolution

Main idea: Replace matrix multiplications with convolutions

- Sparsity: Inputs only combined with neighbours
- Parameter sharing: Same kernel used for entire input

Example: Edge Detection



Efficiency of Convolution

Input size: 320 by 280

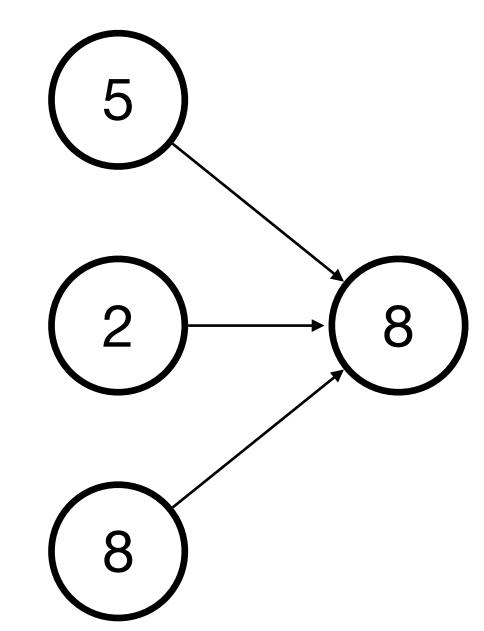
Kernel size: 2 by 1

Output size: 319 by 280

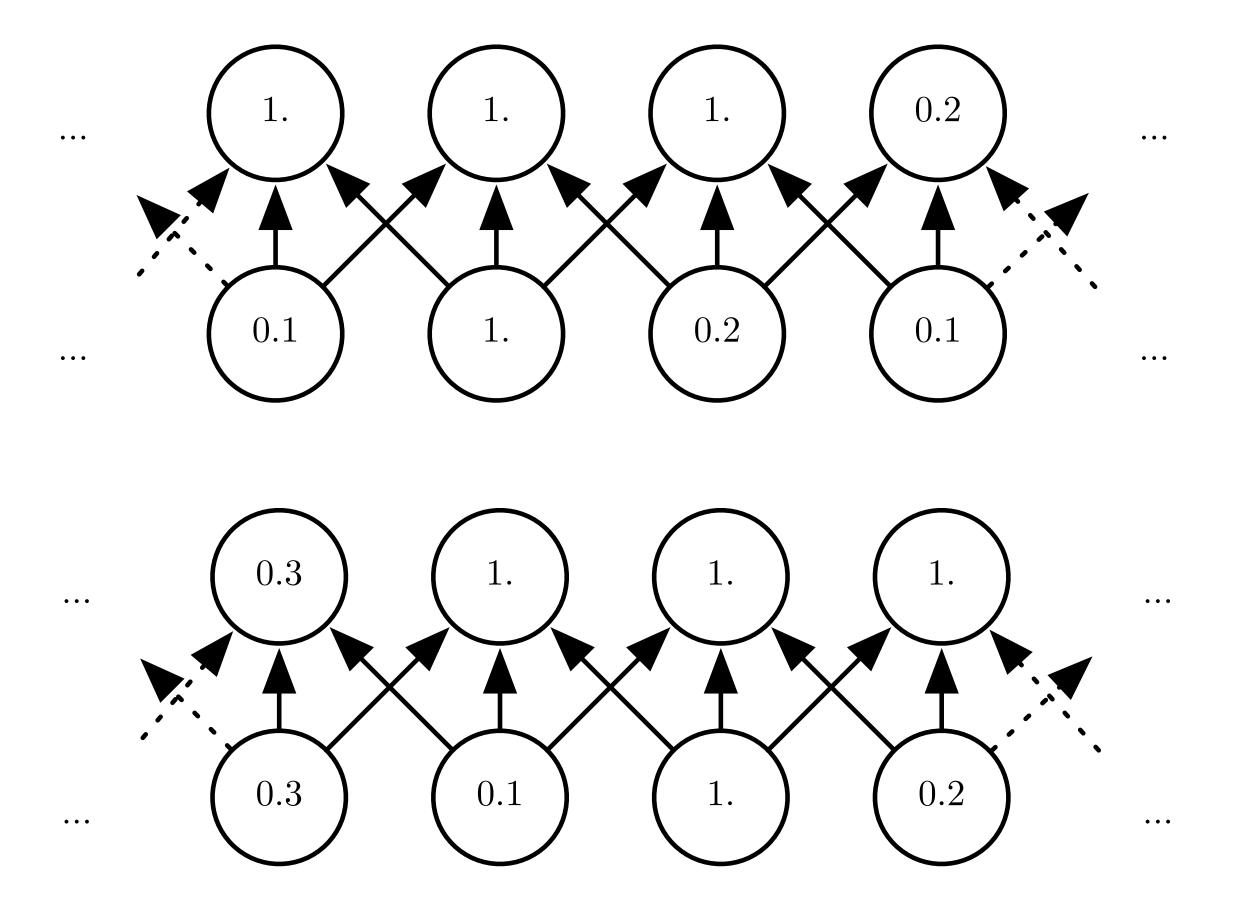
	Dense matrix	Sparse matrix	Convolution
Stored floats	319*280*320*28 0 > 8e9	2*319*280 = 178,640	2
Float muls or adds	>16e9	Same as convolution (267,960)	319*280*3 = 267,960

Operation: Pooling

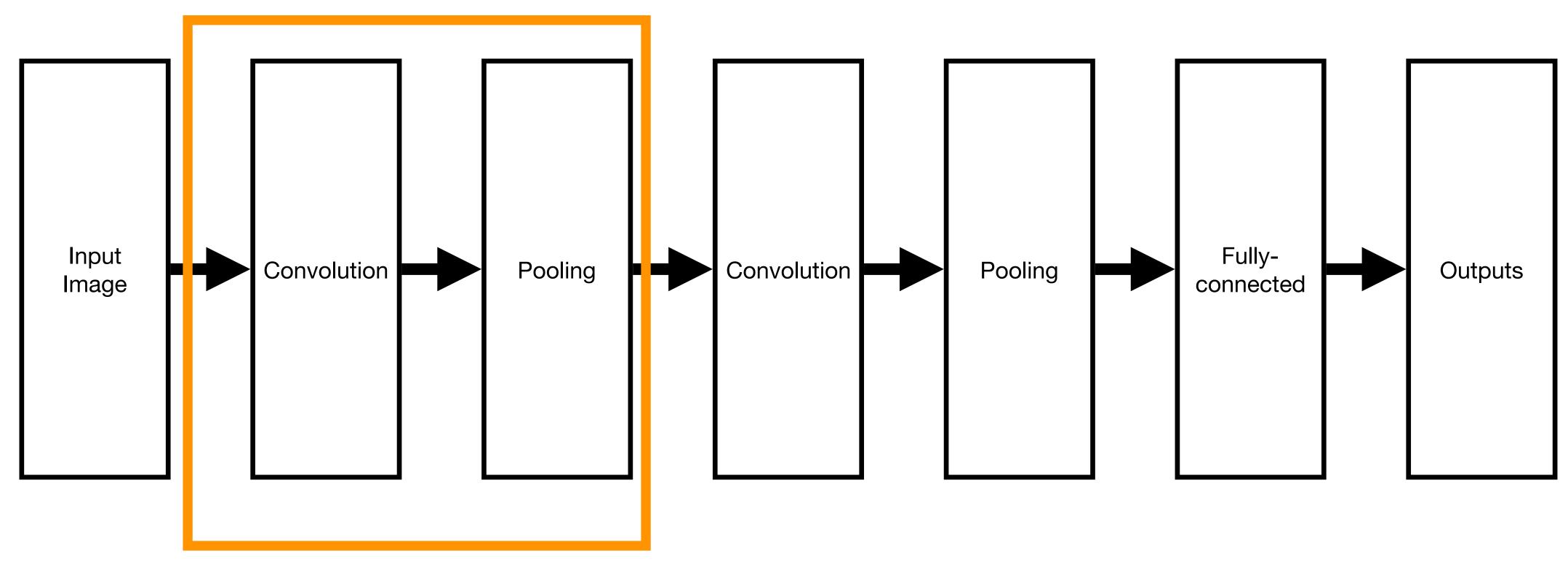
- Pooling summarizes its inputs into a single value, e.g.,
 - max
 - average
- Max-pooling is parameter-free (no bias or edge weights)



Example: Translation Invariance



Typical Architecture



Often convolution-then-pooling is collectively referred to as a

"convolution layer"

Summary

- Classifying images with a standard feedforward network requires vast quantities of parameters (and hence data)
- Convolutional networks add pooling and convolution
 - Sparse connectivity
 - Parameter sharing
 - Translation equivariance
- Fewer parameters means far more efficient to train