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Recap: Calculus
• Derivatives can be used for optimization 

• Minimization: Increase x if derivative is negative & vice versa 

• Partial derivatives are derivatives of "frozen" function: 
 

• Gradient of a function is a vector of all its partial derivatives: 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Linear Models
• Supervised models we have considered so far have been linear: 
 
 

• Linear classification / regression 

• Logistic regression 

• Advantages: Efficient to fit (closed form sometimes!) 

• Disadvantages: Can be really limited

y = f(x; w) = g(wTx) = g (
n

∑
i=1

wixi)
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Example: XOR
• The function f(x1, x2) = (x1 XOR x2) 

is not linearly separable 

• There is no way to draw a straight 
line with all of the 1's on one side 
and all of the 0's on the other 

• This means that no linear model 
can represent XOR exactly; there 
will always be some errors 

• Question: What else could we do? (Goodfellow 2017)

XOR is not linearly separable
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Figure 6.1, left

(Image: Goodfellow 2017)A: Transform inputs



Nonlinear Features

• One option: Learn a linear model on richer inputs 

1. Define a feature mapping 𝜙(x) that returns functions of 
the original inputs 

2. Learn a linear model of the features instead of the inputs 

y = f(x; w) = g(wTx) = g (
n

∑
i=1

wixi)

y = f(x; w) = g(wTϕ(x)) = g (
n

∑
i=1

wi[ϕ(x)]i)



Nonlinear Features for XOR
• Question: 

What additional features would help? 

• The product of x1 and x2! 

• 𝜙(x1, x2) = [1, x1, x2, x1x2] 

• w = [-0.2, .5, .5, -2] 

• f(x; w) = wT𝜙(x) > 0 for (0,1) and (1,0)  
f(x; w) = wT𝜙(x) < 0 for (1,1) and (0,0)

(Goodfellow 2017)

XOR is not linearly separable
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Figure 6.1, left

(Image: Goodfellow 2017)
(Goodfellow 2017)

Solving XOR
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collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
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Learning Nonlinear Features

• Manually constructing good features is extremely hard 

• Manually constructed features are not transferrable between 
domains 

• e.g., SIFT features were a revolution in computer vision, 
but are only for computer vision 

• Deep learning aims to learn 𝜙 automatically from the data



Neural Units
• Deep learning learns 𝜙 by composing little functions  

• These function are called units 
 
 
 
 
 
 

• Question: How is this different from a linear model?

h
x1

x2

h(x; w) = g(wTx) = g (
n

∑
i=1

wixi)
weights activation 

function

A: The activation function is non-linear, so composition of units will also be nonlinear.



Feedforward Neural Network
• A neural network is many units composed together 

• Feedforward neural network: Units arranged into layers 

• Each layer takes outputs of previous layer as its inputs
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Example: XOR network
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• Activation: g(z) = max{0, z}  ("recified linear unit") 

• Weights: [+1, -1] for h1; [-1, +1] for h2 

• [+1, +1] for y



Matrix Representation
• You can think of the outputs of each 

layer as a vector h 

• The weights from all the outputs of 
a previous layer to each of the units 
of the layer can be collected into a 
matrix W 

• A bias term for each unit can be 
collected into a vector b: 

hx y
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h = g (Wx + b)



Architecture

Design decisions: 

1. Depth: number of layers 

2. Width: number of nodes in each layer 

3. Fully-connected?
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Universal Approximation 
Theorem

Theorem: (Hornik et al. 1989; Cybenko 1989; Leshno et al. 1993) 
A feedforward network with at least one hidden layer with a 
"squashing" activation or rectified linear activation and a linear 
output layer can approximate any function to within any given 
error bound, given enough hidden units. 

• So a large feedforward network can represent any function 
we're trying to learn! 

• Question: Why bother with multiple layers?



Hidden Unit Activations

• Default choice: Rectified linear units (ReLU) 
g(z) = max(0, z) 

• Other common types: 

• tanh(z) 

•                (sigmoid) 

• Sigmoid suffers from vanishing gradients; relu does not

1
1 + e−z



Training

• Neural networks are trained using variants of 
gradient descent 

• e.g., stochastic gradient descent 

• Back propagation is an algorithm that allows for efficient 
computation of the gradient 

• Modern frameworks can compute the gradient in other ways 
(e.g., automatic differentiation) even for complicated units)



Summary
• Generalized linear models are insufficiently expressive 

• Composing GLMs into a network is arbitrarily expressive 

• A neural network with a single hidden layer can approximate any 
function 

• But the network might need to be impractically large, prone to 
overfitting, or inefficient to train 

• Trained using variants of gradient descent 

• Architectural choices can make a network easier to train, less prone 
to overfitting


