
Course Evaluations
1. More examples

• This was the top request

2. Visuals/diagrams

3. Extra resources

• Problem sets

• Content from the the web

Course Evaluations
4. Too fast

• topics seem to get left behind pretty fast

• topics build on each other; easy to get lost in the middle

5. Recaps appreciated

6. Bigger fonts please

7. Please go over code part of the assignment in lecture

Going Forward

1. Example at start of every lecture

2. At least one diagram for visual learners

3. Fonts: More willing to split over slides

4. Code walkthrough in labs

Calculus Refresher

CMPUT 366: Intelligent Systems 
 

GBC §4.1, 4.3

Lecture Outline

1. Midterm course evaluations

2. Recap

3. Gradient-based optimization

4. Overflow and underflow

Recap: Bayesian Learning

• In Bayesian Learning, we learn a distribution over models
instead of a single model

• Model averaging to compute predictive distribution

• Prior can encode bias over models (like regularization)

• Conjugate models: can compute everything analytically

Recap: Monte Carlo
• Often we cannot directly estimate probabilities or

expectations from our model

• Example: non-conjugate Bayesian models

• Monte Carlo estimates: Use a random sample from the
distribution to estimate expectations by sample averages

1. Use an easier-to-sample proposal distribution instead

2. Sample parts of the model sequentially

Loss Minimization
In supervised learning, we choose a hypothesis to minimize a
loss function

Example: Predict the temperature

• Dataset: temperatures y(i) from a random sample of days

• Hypothesis class: Always predict the same value 𝜇

• Loss function:   L(μ) =
1
n

n

∑
i=1

(y(i) − μ)2

Optimization
Optimization: finding a value of x that minimizes f(x)  

• Temperature example: Find 𝜇 that makes L(𝜇) small

Gradient descent: Iteratively move from current estimate in the
direction that makes f(x) smaller

• For discrete domains, this is just hill climbing:  
Iteratively choose the neighbour that has minimum f(x)

• For continuous domains, neighbourhood is less well-defined

x* = arg min
x

f(x)

Derivatives
• The derivative  

of a function f(x) is the slope
of f at point x

• When f'(x) > 0, f increases
with small enough increases
in x

• When f'(x) < 0, f decreases
with small enough increases
in x -4

-3

-2

-1

0

1

2

3

4

𝜇

a-2.0
a-1.7
a-1.4
a-1.0
a-0.7
a-0.4
a-0.1
a+0.2
a+0.6
a+0.9
a+1.2
a+1.5
a+1.8

L(𝜇) L'(𝜇)
f′�(x) =

d
dx

f(x)

Multiple Inputs

Example: 
Predict the temperature based on pressure and humidity

• Dataset:

• Hypothesis class: Linear regression: h(x; w) = w1x1 + w2x2

• Loss function:

(x(1)
1 , x(1)

2 , y(1)), …, (x(m)
1 , x(m)

2 , y(m)) = {(x(i), y(i)) ∣ 1 ≤ i ≤ m}

L(w) =
1
n

n

∑
i=1

(y(i) − h(x(i); w))2

Partial Derivatives

Partial derivatives: How much does f(x) change when we only
change one of its inputs xi?

• Can think of this as the derivative of a conditional function
g(xi) = f(x1, ..., xi, ...,xn):

Gradient: A vector that contains all of the partial derivatives:  

∂
∂xi

f(x) =
d

dxi
g(xi)

∇f(x) =

∂
∂x1

f(x)

⋮
∂

∂xn
f(x)

Gradient Descent

• The gradient of a function tells how to change every element of a
vector to increase the function

• If the partial derivative of xi is positive, increase xi

• Gradient descent:  
Iteratively choose new values of x in the direction of the gradient 

• This only works for sufficiently small changes

• Question: How much should we change xold?

xnew = xold − η∇f(xold)

learning rate
A: That is an empirical question with no "right" answer. 

We try different learning rates and see which works well.

Approximating Real Numbers
• Computers store real numbers as finite number of bits

• Problem: There are an infinite number of real numbers in any interval

• Real numbers are encoded as floating point numbers:

• 1.001...011011 × 21001..0011  

• Single precision: 24 bits signficand, 8 bits exponent

• Double precision: 53 bits significand, 11 bits exponent

• Deep learning typically uses single precision!

significand exponent

Underflow
• Numbers that are smaller than 1.00...01 × 2-1111...1111 will be

rounded down to zero

• Sometimes that's okay! (Almost every number gets rounded)

• Often it's not (when?)

• Denominators: causes divide-by-zero

• log: returns -inf

• log(negative): returns nan

1. 001…011010
significand

× 2
1001…0011

exponent

Overflow
• Numbers bigger than 1.111...1111 × 21111 will be rounded up to

infinity

• Numbers smaller than -1.111...1111 × 21111 will be rounded
down to negative infinity

• exp is used very frequently

• Underflows for very negative numbers

• Overflows for "large" numbers

• 89 counts as "large"

1. 001…011010
significand

× 2
1001…0011

exponent

Addition/Subtraction
• Adding a small number to a large number can have no effect

(why?)

Example: 
>>> A = np.array([0., 1e-8]) 
>>> A = np.array([0., 1e-8]).astype('float32') 
>>> A.argmax() 
1 
>>> (A + 1).argmax() 
0

>>> A+1 
array([1., 1.], dtype=float32)

1. 001…011010
significand

× 2
1001…0011

exponent

1e-8 is not the 
smallest possible 

float32

A: Because the when the large number is e.g., 1.000...000 x 2n,

the difference between 1.000...000 x 2n and 1.000...001 x 2n

might be larger than the small number.

Softmax

• Softmax is a very common function

• Used to convert a vector of activations (i.e., numbers) into a
probability distribution

• Question: Why not normalize them directly without exp?

• But exp overflows very quickly:

• Solution: softmax(z) where z = x - maxj xj

softmax(x)i =
exp(xi)

∑n
j=1 exp(xj)

A: Output of exp is always positive

Log
• Dataset likelihoods grow small exponentially quickly in the

number of datapoints

• Example:

• Likelihood of a sequence of 5 fair coin tosses = 2-5 = 1/32

• Likelihood of a sequence of 100 fair coin tosses = 2-100

• Solution: Use log-probabilities instead of probabilities  

• log-prob of 1000 fair coin tosses is 1000 log 0.5 ≈ -693

log(p1p2p3…pn) = log p1 + … + log pn

General Solution

• Question:  
What is the most general solution to numerical problems?

• Standard libraries

• Theano, Tensorflow both detect common unstable
expressions

• scipy, numpy have stable implementations of many
common patterns (e.g., softmax, logsumexp, sigmoid)

Summary
• Gradients are just vectors of partial derivatives

• Gradients point "uphill"

• Learning rate controls how fast we walk uphill

• Deep learning is fraught with numerical issues:

• Underflow, overflow, magnitude mismatches

• Use standard implementations whenever possible

