Course Evaluations

1. More examples

- This was the top request
- 2. Visuals/diagrams
- 3. Extra resources
 - Problem sets
 - Content from the the web

Course Evaluations

4. Too fast

- topics seem to get left behind pretty fast
- 5. Recaps appreciated
- 6. Bigger fonts please

• topics build on each other; easy to get lost in the middle

7. Please go over code part of the assignment in lecture

- 1. **Example** at start of every lecture
- 2. At least one **diagram** for visual learners
- 3. Fonts: More willing to split over slides
- Code walkthrough in labs 4.

Going Forward

Calculus Refresher

CMPUT 366: Intelligent Systems

GBC §4.1, 4.3

Lecture Outline

- 1. Midterm course evaluations
- 2. Recap
- 3. Gradient-based optimization
- 4. Overflow and underflow

Recap: Bayesian Learning

- instead of a **single model**
- Model averaging to compute predictive distribution
- **Prior** can encode **bias** over models (like regularization)

• In Bayesian Learning, we learn a **distribution** over models

• **Conjugate** models: can compute everything analytically

Recap: Monte Carlo

- Often we cannot directly estimate probabilities or expectations from our model
 - Example: non-conjugate Bayesian models
- - 2. Sample parts of the model sequentially

 Monte Carlo estimates: Use a random sample from the distribution to estimate expectations by sample averages

Use an easier-to-sample proposal distribution instead

Loss Minimization

In supervised learning, we ch loss function

Example: Predict the **temperature**

- Dataset: temperatures $y^{(i)}$ from a random sample of days
- Hypothesis class: Always predict the same value μ

• Loss function:
$$L(\mu) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mu)^2$$

In supervised learning, we choose a hypothesis to minimize a

Optimization

Optimization: finding a value of x that **minimizes** f(x)

• Temperature example: Find μ that makes L(μ) small

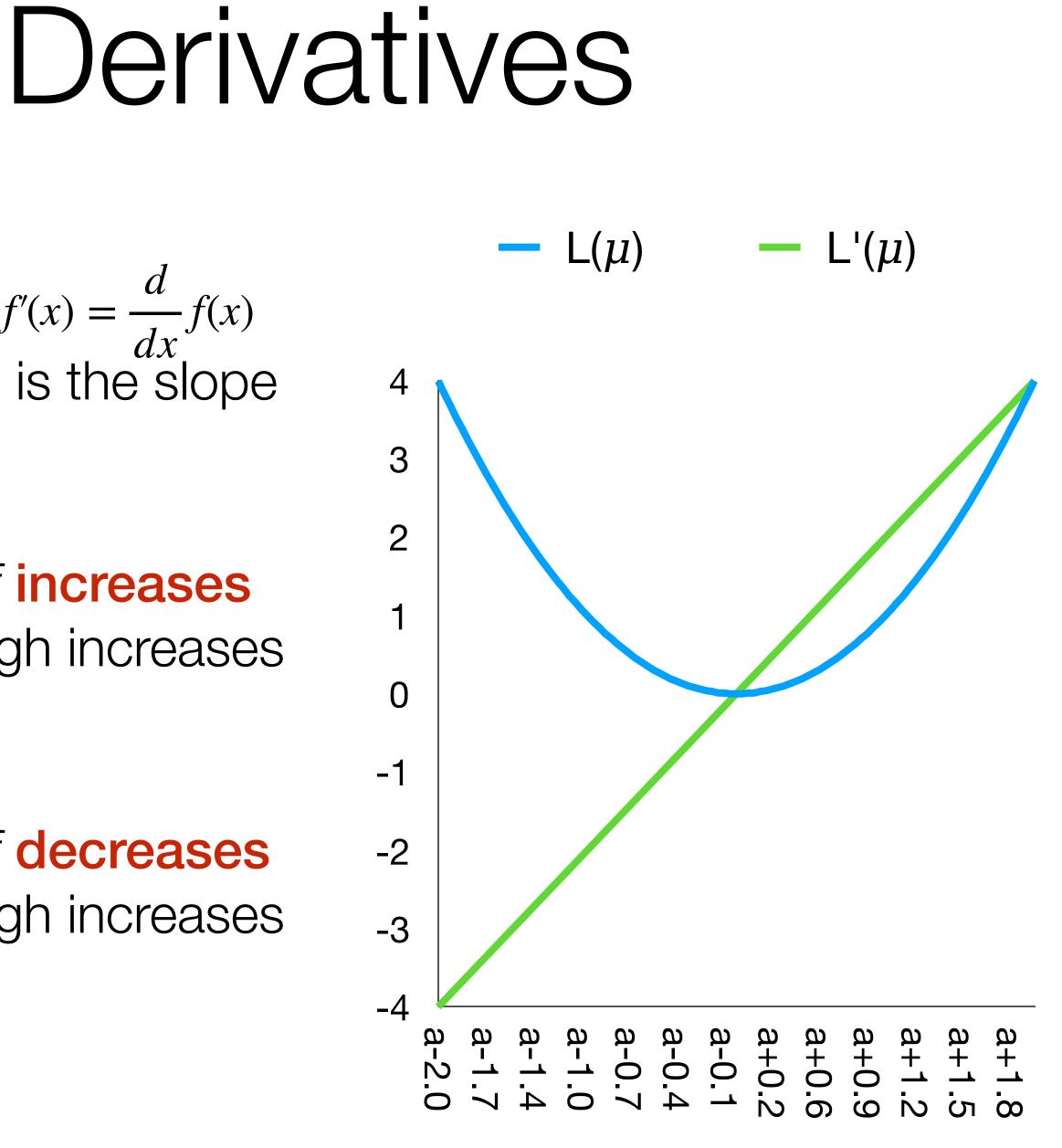
direction that makes f(x) **smaller**

- For discrete domains, this is just hill climbing: Iteratively choose the **neighbour** that has minimum f(x)
- For **continuous** domains, neighbourhood is less well-defined

- $x^* = \arg\min f(x)$

Gradient descent: Iteratively move from current estimate in the

- The **derivative** $f'(x) = \frac{d}{dx}f(x)$ of a function f(x) is the slope of *f* at point *x*
- When f'(x) > 0, f increases with small enough increases in x
- When f'(x) < 0, f decreases with small enough increases IN X



Multiple Inputs

Example: Predict the temperature **based on** pressure and humidity

- Dataset: $(x_1^{(1)}, x_2^{(1)}, y^{(1)}), \dots,$
- Loss function: $L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=$

$$(x_1^{(m)}, x_2^{(m)}, y^{(m)}) = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \mid 1 \le i \le m \right\}$$

• Hypothesis class: Linear regression: $h(\mathbf{x}; \mathbf{w}) = W_1 X_1 + W_2 X_2$

$$\sum_{i=1}^{n} \left(y^{(i)} - h(\mathbf{x}^{(i)}; \mathbf{w}) \right)^2$$

Partial Derivatives

Partial derivatives: How much does $f(\mathbf{x})$ change when we only change one of its inputs x_i ?

• Can think of this as the der $g(x_i) = f(x_1, ..., x_i, ..., x_n)$:

 $\frac{\partial}{\partial x_i} f(\mathbf{x})$

Gradient: A vector that contains all of the partial derivatives:

 $\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \\ \\ \frac{\partial}{\partial x_n} \end{bmatrix}$

• Can think of this as the derivative of a conditional function

$$\mathbf{x}) = \frac{d}{dx_i}g(x_i)$$

$$f(\mathbf{x})$$

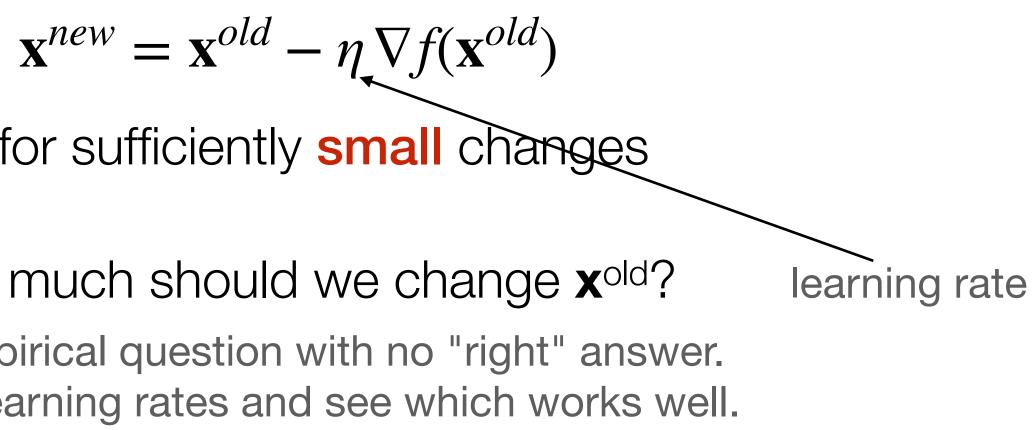
 \vdots
 $f(\mathbf{x})$

Gradient Descent

- The gradient of a function tells how to change every element of a vector to increase the function
 - If the partial derivative of x_i is positive, increase x_i \bullet
- **Gradient descent:** Iteratively choose new values of x in the direction of the gradient

- This only works for sufficiently small changes
- **Question:** How much should we change **x**^{old}?

A: That is an empirical question with no "right" answer. We try different learning rates and see which works well.



Approximating Real Numbers

- Computers store real numbers as finite number of bits
- Problem: There are an infinite number of real numbers in any interval
- Real numbers are encoded as floating point numbers:
 - 1.001...011011 × 2^{1001..0011}

significand exponent

- Single precision: 24 bits signficand, 8 bits exponent
- Double precision: 53 bits significand, 11 bits exponent
- **Deep learning** typically uses single precision!

1 t

Underflow

- rounded down to **zero**
- Often it's not (**when?**)
 - Denominators: causes divide-by-zero
 - log: returns -inf ullet
 - log(negative): returns nan

1001...0011 $1.001...011010 \times 2$ exponent

significand

• Numbers that are smaller than $1.00...01 \times 2^{-1111...1111}$ will be

Sometimes that's okay! (Almost every number gets rounded)

Overflow

- infinity
- down to **negative infinity**
- **exp** is used very frequently
 - Underflows for very negative numbers •
 - Overflows for "large" numbers
 - 89 counts as "large"

1001...0011 $1.001...011010 \times 2$ exponent

significand

• Numbers bigger than $1.111...1111 \times 2^{1111}$ will be rounded up to

• Numbers smaller than $-1.111...1111 \times 2^{1111}$ will be rounded

(**why**?)

Example:

>>> A = np.array([0., 1e-8]) >>> A = np.array([0., 1e-8]).astype('float32') >>> A.argmax() >>> (A + 1).argmax() \mathbf{O}

>>> A+1 array([1., 1.], dtype=float32)

• Adding a small number to a large number can have no effect

A: Because the when the large number is e.g., $1.000...000 \times 2^{n}$, the difference between 1.000...000 x 2ⁿ and 1.000...001 x 2ⁿ might be larger than the small number.

> 1e-8 is not the smallest possible float32

Softmax $softmax(\mathbf{x})_{i} = \frac{\exp(x_{i})}{\sum_{j=1}^{n} \exp(x_{j})}$

- **Softmax** is a very common function
- Used to convert a vector of activations (i.e., numbers) into a probability distribution
 - \bullet
- But exp **overflows** very quickly:
 - Solution: softmax(z)

Question: Why not normalize them directly without exp? A: Output of exp is always positive

where $\mathbf{z} = \mathbf{x} - \max_i x_i$

- Dataset likelihoods grow small exponentially quickly in the number of datapoints
- Example:
 - Likelihood of a sequence of 5 fair coin tosses $= 2^{-5} = 1/32$
 - Likelihood of a sequence of 100 fair coin tosses = 2^{-100}
- Solution: Use log-probabilities instead of probabilities $\log(p_1p_2p_3...p_n) = \log p_1 + ... + \log p_n$
- log-prob of 1000 fair coin tosses is 1000 log 0.5 \approx -693

_Og

General Solution

- **Question:** lacksquare
- Standard libraries
 - expressions

What is the most general solution to numerical problems?

• Theano, Tensorflow both **detect** common unstable

 scipy, numpy have stable implementations of many common patterns (e.g., softmax, logsumexp, sigmoid)

Summary

- Gradients are just vectors of partial derivatives
 - Gradients point "uphill" lacksquare
- Learning rate controls how fast we walk uphill
- Deep learning is fraught with **numerical** issues:
 - Underflow, overflow, magnitude mismatches \bullet

• Use standard implementations whenever possible