Monte Carlo Estimation

CMPUT 366: Intelligent Systems

P&M §8.6

Lecture Outline

- 1. Recap & Logistics
- 2. Estimation via Sampling
- 3. Sampling from Hard-to-Sample Distributions

Reading Week

- Next week is **reading week**
 - No lectures
 - No lab

Recap: Bayesian Learning

- In Bayesian Learning, we learn a **distribution** over models instead of a **single model**
- computed **analytically**
 - Today: non-conjugate models! lacksquare
- posterior predictive distribution
- regularization

• When the model is **conjugate**, posterior probabilities can be

• We can make predictions by **model averaging** to compute the

• The prior can encode bias over models, much the same as

- Suppose that we are able to generate independent random **samples** from a random variable X
- How can we use those random samples to estimate the expected value of X?
 - or some function h of X; but that in general is just a different random variable Y = h(X)
- **Question:** But first, why would we *want* to?

Estimation via Sampling

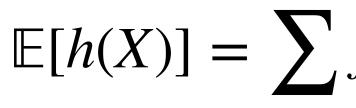
Estimation from a Sample

Law of Large Numbers:

sample average approaches the **expected value** of X.

$$\mathbb{E}[X] = \sum_{x} f(x)x \approx \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Since Y=h(X) is also a random variable, this generalizes to arbitrary **functions** of *X*:



As the number *n* of independent samples x_1, x_2, \dots, x_n from a random variable X with distribution f(x) approaches infinity, the

$$f(x)h(x) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

- **Question:** How can we use a sample to estimate the **probability** of a proposition α ?
- Probability of a proposition is just the expectation of its indicator function:

 $I_{\alpha}[x] = \begin{cases} 1 & \text{if } \alpha(x), \\ 0 & \text{otherwise.} \end{cases}$

• So estimate that expectation as with any other function:

 $Pr(\alpha) = \mathbb{E}[\alpha(X)] =$

Probabilities from a Sample

$$\sum_{x} f(x) I_{\alpha}[x] \approx \frac{1}{n} \sum_{x} I_{\alpha}[x]$$

Probably Approximately Correct

- How do we know when we have enough samples?

Hoeffding's inequality:

Suppose that s is the sample average from n independent samples from X. Then

plug into this formula and get a PAC bound.

• We never actually have an infinite number of sampled values

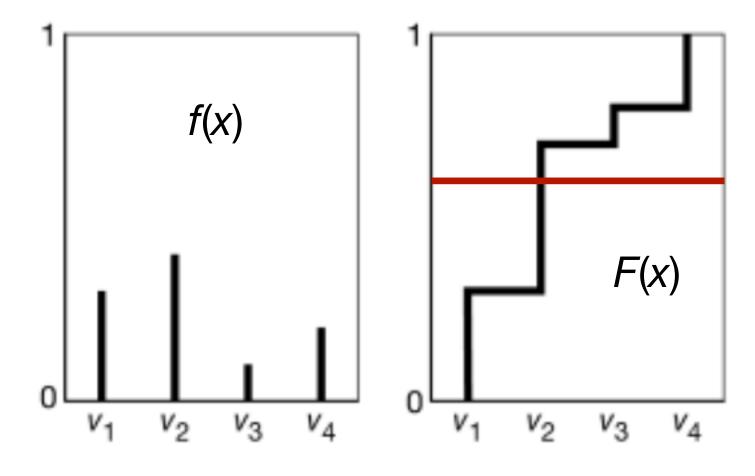
 $\Pr(|\mathbb{E}[X] - s| > \epsilon) \le 2e^{-2n\epsilon^2}.$

• For any given error margin and number of samples, we can

Generating Samples from a Single Variable

- Totally order the domain of the variable (can be arbitrary for categorical variables)
- 2. Cumulative distribution: $F(x) = \Pr(X \le x)$ $F(x) = \int_{-\infty}^{x} f(z)dz$ $F(x) = \sum_{x' \le x} f(x')$
- 3. Select a **uniform** random number $y \in [0,1]$

4. Return $x_i = F^{-1}(y)$



Hard-To-Sample Distributions

Often, we want to sample from distributions that are hard to sample from, especially large joint distributions

- **Rejection Sampling** 1.
- 2. Importance Sampling
- 3. Forward Sampling in a Belief Network
- 4. Particle Filtering

- Can we use an **easy-to-sample** distribution g(x) to help us sample from f(x)?
 - Very common: We know an **unnormalized** $f^*(x)$, but not the properly normalized distribution f(x):

f(x) =

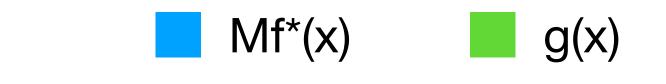
- *f*(*x*) is the **target distribution**
 - *f**(*x*) is the **unnormalized target distribution**
- g(x) is the proposal distribution

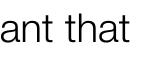
Proposal Distributions

$$\frac{f^*(x)}{\int_{-\infty}^{\infty} f^*(z)dz}$$

Rejection Sampling

- Rejection sampling is one way to use a proposal distribution to lacksquaresample from a target distribution
- Assumption: We know a constant *M* such that $\forall x : Mf^*(x) \le g(x)$
 - Much **easier** to find M than to find the constant that makes the integral come out to exactly 1
- **Repeat** until "enough" samples accepted:
 - 1. Sample $x \sim g(x)$ from the proposal distribution
 - 2. **Sample** $u \sim \text{Uniform}[0,1]$
 - 3. If $u \leq [Mf^*(x) / g(x)]$, accept x (add it to the list of samples) Else reject





Importance Sampling

- Rejection sampling works, but it can be wasteful
 - Lots of samples get rejected when proposal and target distributions are very different
- What if we took a **weighted average** instead?
 - 1. Sample $x_1, x_2, ..., x_n$ from $g(x_1, x_2, ..., x_n)$
 - 2. Weight each sample x_i by

3. **Estimate** is
$$\frac{1}{\sum_{j} w_{j}} \sum_{x_{i} \sim g} w_{i} x_{i}$$

$$\forall w_i = \frac{Mf^*(x_i)}{g(x_i)}$$

$$\mathbb{E}[X] = \sum_{x} f(x)x$$
$$= \sum_{x} \frac{g(x)}{g(x)} f(x)x$$
$$= \sum_{x} g(x) \frac{f(x)}{g(x)} x$$
$$\approx \frac{1}{n} \sum_{x_i \sim g} \frac{f(x_i)}{g(x_i)} x_i$$

Forward Sampling in a Belief Network

- terms of other parts
 - E.g., belief networks: P(X,Y,Z) = P(X)P(Y)P(Z | X,Y)
 - but not from the joint distribution
- Forward sampling: lacksquare

 - **Repeat** until enough samples generated: 2. **For** each variable *X* in the ordering: **Sample** $x_i \sim P(X \mid pa(X))$

Sometimes we know how to sample parts of a large joint distribution in

• We might be able to directly sample from each conditional distribution

Select an ordering of variables consistent with the factoring

Particle Filtering

- Forward sampling generates values for each variable of a sample, then moves on to the next sample
- **Particle filtering** swaps the order:
 - Generate *n* values for variable *X*, then *n* values for variable *Y*, etc.
 - Especially useful when there is no fixed number of variables (e.g., in sequential models)
- Each sample is called a **particle**. Update its **weight** each time a value is sampled.
- Periodically resample from the particles with replacement, resetting weights to 1
 - High-probability particles likely to be duplicated
 - Low-probability particles likely to be **discarded**
- Resampling means the particles cover the distribution better

Rejection Sampling with Propositions

- How do we condition on some propositional evidence α ?
- Repeat until enough samples accepted
 - **Sample** *x* from the **full joint distribution** (e.g., using forward sampling or particle sampling)
 - 2. If $\alpha(x)$, then accept x Else reject
- Another view of this procedure:
 - **Approximate** the full joint distribution
 - 2. Condition on evidence α

e.g., $\alpha(x) = (x_1 > 0 \land x_4 \le 12)$

Summary

- Often we cannot directly estimate probabilities or expectations from our model
- - 2. Sample parts of the model **sequentially**

 Monte Carlo estimates: Use a random sample from the distribution to estimate expectations by sample averages

• Two families of techniques for hard to sample distributions:

1. Use an easier-to-sample **proposal** distribution instead