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Recap: Avoiding Overfitting

There are multiple approaches to avoiding overfitting: 

1. Pseudocounts: Explicitly account for regression to the 
mean 

2. Regularization: Explicitly trade off between fitting the data 
and model complexity 

3. Cross-validation: Detect overfitting using some of the 
training data



Recap: Pseudocounts
• When we have not observed all the values of a variable, those 

variables should not be assigned probability zero 

• If we don't have very much data, we should not be making very 
extreme predictions 

• Solution: artificially add some "pretend" observations for each value of 
a variable (pseudocounts) 

• When there is not much data, predictions will tend to be less 
extreme (why?) 

• When there is more data, the pseudocounts will have less effect 
on the predictions



Recap: Regularization
• We shouldn't choose a complicated model unless there is clear 

evidence for it 

• Instead of optimizing directly for training error, optimize training error 
plus a penalty for complexity:  
 

• regularizer measures the complexity of the hypothesis 

• λ is the regularization parameter: indicates how important 
hypothesis complexity is compared to fit 

• Larger λ means complexity is more important

arg min
h∈ℋ ∑

e

error(e, h) + λ × regularizer(h)



Learning Point Estimates
• So far, we have considered how to find the best single model, 

e.g., 

• learn a decision tree 

• optimize the weights of a linear or logistic regression 

• The predictions might be a probability distribution, but they are 
coming out of a single model: 

P(Y | X)  Probability of target Y given observation X 

• We have been learning point estimates of our model



Learning Model Probabilities

• Instead, we could learn a distribution over models: 
 
 
 

• This is called Bayesian learning: we never discard any 
model, we only weight them differently depending upon their 
posterior probability 

• Question: Why would we want to do that?

• Pr(X,Y | 𝜃) Probability of target Y and features X given model 𝜃 
• Pr(𝜃 | D)    Probability of model 𝜃 given dataset D



What is a Model?

• We can do Bayesian learning over finite sets of models: 

• e.g., { rank by feature 𝜃 | 𝜃 ∈ {height, weight, age} } 

• We can do Bayesian learning over parametric families of models: 

• e.g., { regression with weights w0=𝜃1, w1=𝜃2 | 𝜃 ∈ ℝ2 } 

• We can mix the two!   

• 𝜃 can encode choice of model family and parameters

• Pr(X,Y | 𝜃) Probability of target Y and features X given model 𝜃 
• Pr(𝜃 | D)    Probability of model 𝜃 given dataset D



What is the Dataset?

• We have an expression for the probability of a single example given a 
model: Pr(X, Y | 𝜃) 

• Question: What is the expression for the probability of a dataset of 
observations D={ (X1,Y1), ..., (Xm,Ym) } given a model? 

• Easiest approach: Assume that the dataset independent, identically 
distributed observations: (Xi,Yi) ~ P(X, Y | 𝜃) 

•  
 

• Pr(X,Y | 𝜃) Probability of target Y and features X given model 𝜃 
• Pr(𝜃 | D)    Probability of model 𝜃 given dataset D

Pr(D |θ) = Pr(X1, Y1 |θ) × … × Pr(Xm, Ym |θ)

=
m

∏
i=1

Pr(Xi, Yi |θ)



What is the  
Posterior Model Probability?

Now we can use Bayes' Rule to compute the posterior 
probability of a model 𝜃: 
 
 
 

• Pr(X,Y | 𝜃) Probability of target Y and features X given model 𝜃 
• Pr(𝜃 | D)    Probability of model 𝜃 given dataset D

Pr(θ |D) =
Pr(D |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

∑θ′ � Pr(D |θ′�) Pr(θ′�)

Prior probability 
of model 𝜃

Likelihood of data D 
given model 𝜃



Example: Biased Coin
• Back to coin flipping!  We can flip a coin and observe heads or 

tails, but we don't know the coin's bias 

• Model: Binomial observations  

• Observations: Y∈{h,t} 

• Bias: 𝜃 ∈ [0,1] 

• Likelihood: Pr(H | 𝜃) = 𝜃 

• Question: What should the prior p(𝜃) be?



p(
𝜃)

𝜃
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𝜃
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Biased Coin: 
Posterior Probabilities

• Before we see any flips, all biases 
are equally probable (according to 
our prior) 

• After more and more flips, we 
become more confident in 𝜃 

• 𝜃 with highest probability is 2/3 

• Expected value of 𝜃 is less! 
(why?) 

• But with more observations, mode 
and expected value get closer



Beta-Binomial Models
• Likelihood: P(h | 𝜃) = 𝜃 

• aka Bernoulli(h | 𝜃) 

• Dataset likelihood: 𝜃n1 × (1-𝜃)n0 

• aka Binomial(n1, n0) 

• Prior: P(𝜃) = 1 

• aka Beta(1,1) 

• Models of this kind are called Beta-Binomial models 

• They can be solved analytically: Pr(𝜃 | D) = Beta(1+n1, 1+n0)



Conjugate Priors
• The beta distribution is a conjgate prior for the binomial 

distribution: 

• Updating a beta prior with a binomial likelihood gives a 
beta posterior 

• Other distributions have this property: 

• Gaussian-Gaussian (for means) 

• Dirichlet-Multinomial (generalization of Beta-Binomial for 
multiple values)



Using Model Probabilities

So we can estimate Pr(𝜃 | D).  What can we do with it? 

1. Parameter estimates 

2. Target predictions (model averaging) 

3. Target predictions (point estimates)



1. Parameter Estimates

• Sometimes, we really want to know the parameters of a 
model itself 

• E.g., maybe I don't care about predicting the next coin flip, 
but I do want to know whether the coin is fair 

• Can use Pr(𝜃 | D) to make statements like  
Pr(0.49 ≤ 𝜃 ≤ 0.51) > 0.9  



2. Model Averaging

• Sometimes we do want to make predictions:  
 

• This is called the posterior predictive distribution 

• Question: How is this different from just learning a point 
estimate of a model, and then predicting with that model?

Pr(Y |D) = ∑
θ

Pr(Y |θ) Pr(θ |D)



3. Maximum A Posterior
• Sometimes we do want to make predictions, but... 
 

• the posterior predictive distribution may be expensive to compute (or 
even intractable) 

• One possible solution is to use the maximum a posterior model as a 
point estimate: 

• Question: Why would you do this instead of just using a point 
estimate that was computed in the usual way?

Pr(Y |D) = ∫
1

0
Pr(Y |θ) Pr(θ |D)dθ

Pr(Y |D) ≃ Pr(Y | ̂θ)  where  ̂θ = arg max
θ

Pr(θ |D)



Prior Distributions as Bias

• Suppose I'm comparing two models, 𝜃1 and 𝜃2 such that 
Pr(D | 𝜃1) = Pr(D | 𝜃2) 

• Question: Which model has higher posterior probability?  

• Priors are a way of encoding bias: the tell use which models 
to prefer when the data doesn't



Priors for Pseudocounts

• We can straightforwardly encode pseudocounts as prior 
information in beta-binomial and dirichlet-multinomial models 

• E.g., for pseudocounts k1 and k0, 

p(𝜃) = Beta(1+k1, 1+k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also 

• L2 regularization is equivalent 
to a Gaussian prior on the 
weights: p(w) = N(w|m,s) 

• L1 regularization is equivalent 
to a Laplacian prior on the 
weights: p(w) = exp(|w|)/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Summary
• In Bayesian Learning, we learn a distribution over models instead of a 

single model 

• When the model is conjugate, posterior probabilities can be computed 
analytically 

• See next lecture for non-conjugate models 

• We can make predictions by model averaging to compute the posterior 
predictive distribution 

• The prior can encode bias over models, much the same as regularization 

• In fact, it can exactly encode certain kinds of regularization


